The Role of Human Lungs in the Biotransformation of Propofol

Author:

Dawidowicz Andrzej L.1,Fornal Emilia2,Mardarowicz Marek2,Fijalkowska Anna3

Affiliation:

1. Professor.

2. Doctor, Department of Chemical Physics and Physicochemical Separation Methods, Maria Curie-Sklodowska University.

3. Doctor, Department of Anaesthesia and Intensive Therapy, University School of Medicine, Lublin, Poland.

Abstract

Background The metabolism of propofol is very rapid, and its transformation takes place mainly in the liver. There are reports indicating extrahepatic metabolism of the drug, and the alimentary canal, kidneys, and lungs are mentioned as the most probable places where the process occurs. The aim of this study was to determine whether the human lungs really take part in the process of propofol biotransformation. Methods Blood samples were taken from 55 patients of American Society of Anesthesiologists grade 1-3 scheduled for elective intracranial procedures (n = 47) or for pulmonectomy (n = 8). All patients were premedicated with diazepam (10 mg) administered orally 2 h before anesthesia. Propofol total intravenous anesthesia was performed at the following infusion rates: 12 mg. kg-1. h-1, 9 mg. kg-1. h-1, and 6 mg. kg-1. h-1. Fentanyl and pancuronium bromide were also administered intermittently. After tracheal intubation, the lungs were ventilated to normocapnia with an oxygen-air mixture (fraction of inspired oxygen = 0.33). Blood samples for propofol and 2,6-diisopropyl-1, 4-quinol analysis were taken simultaneously from the right atrium and the radial artery, or the pulmonary artery and the radial artery. The concentration of both substances were measured with high-performance liquid chromatography and gas chromatography-mass spectroscopy. Results The concentration of propofol in the central venous system (right atrium or pulmonary artery) is greater than in the radial artery, whereas the opposite is observed for propofol's metabolite, 2,6-diisopropyl-1,4-quinol. Higher propofol concentrations are found in blood taken from the pulmonary artery than in the blood collected from the radial artery. Conclusions Human lungs take part in the elimination of propofol by transforming the drug into 2,6-diisopropyl-1,4-quinol.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference18 articles.

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3