Arterial and Venous Contributions to Near-infrared Cerebral Oximetry

Author:

Watzman H. Marc1,Kurth C. Dean2,Montenegro Lisa M.3,Rome Jonathan4,Steven James M.2,Nicolson Susan C.5

Affiliation:

1. Fellow, Brain Research Laboratory, Departments of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia.

2. Associate Professor, Brain Research Laboratory, Departments of Anesthesiology and Critical Care Medicine and Pediatrics, The Children’s Hospital of Philadelphia, and the Departments of Anesthesia and Pediatrics, University of Pennsylvania School of Medicine.

3. Assistant Professor.

4. Associate Professor, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine.

5. Professor, Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, and the Department of Anesthesia, University of Pennsylvania School of Medicine.

Abstract

Background Cerebral oximetry is a noninvasive bedside technology using near-infrared light to monitor cerebral oxygen saturation (Sco2) in an uncertain mixture of arteries, capillaries, and veins. The present study used frequency domain near-infrared spectroscopy to determine the ratio of arterial and venous blood monitored by cerebral oximetry during normoxia, hypoxia, and hypocapnia. Methods Twenty anesthetized children aged < 8 yr with congenital heart disease of varying arterial oxygen saturation (Sao2) were studied during cardiac catheterization. Sco2, Sao2, and jugular bulb oxygen saturation (Sjo2) were measured by frequency domain near-infrared spectroscopy and blood oximetry at normocapnia room air, normocapnia 100% inspired O2, and hypocapnia room air. Results Among subject conditions, Sao2 ranged from 68% to 100%, Sjo2 from 27% to 96%, and Sco2 from 29% to 92%. Sco2 was significantly related to Sao2 (y = 0. 85 x -17, r = 0.47), Sjo2 (y = 0.77 x +13, r = 0.70), and the combination (Sco2 = 0.46 Sao2 + 0.56 Sjo2 - 17, R = 0.71). The arterial and venous contribution to cerebral oximetry was 16 +/- 21% and 84 +/- 21%, respectively (where Sco2 = alpha Sao2 + beta Sjo2 with alpha and beta being arterial and venous contributions). The contribution was similar among conditions but differed significantly among subjects (range, approximately 40:60 to approximately 0:100, arterial:venous). Conclusions Cerebral oximetry monitors an arterial/venous ratio of 16:84, similar in normoxia, hypoxia, and hypocapnia. Because of biologic variation in cerebral arterial/venous ratios, use of a fixed ratio is not a good method to validate the technology.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3