Microcirculatory Perfusion during Volume Therapy

Author:

Funk Wolfgang,Baldinger Verena

Abstract

Background Because of the passage of water and salt molecules into the interstitial space, volume replacement with crystalloid solutions requires an amount at least four times that of lost blood. The resulting tissue edema may interfere with nutritive capillary perfusion and oxygen delivery. To prove this hypothesis, the effects of isovolemic hemodilution (hematocrit 30%) with Ringer's lactate solution or dextran 60 on tissue perfusion and oxygenation were investigated in awake Syrian golden hamsters. Methods Experiments were performed by using a chronic dorsal skinfold window giving access to skeletal muscle tissue (musculus cutaneus) with in vivo microscopy, quantitative video image analysis, and surface oxygen partial pressure electrodes. Central venous and arterial pressures were measured by means of chronically implanted jugular venous and carotid catheters. Results Isovolemic exchange of blood with dextran caused no significant changes in arterial or central venous pressure, heart rate, capillary flow velocity, functional capillary density, or surface oxygen partial pressure during the 1-h observation period. A volume of Ringer's solution equal to four times of the amount of blood lost maintained arterial pressure and heart rate when central venous pressure was kept at predilution control values. However, tissue perfusion determined by counting perfused capillaries per terminal arteriole was reduced by 62%, and mean tissue oxygen partial pressure decreased from 19 to 8 mmHg. Conclusions In this model, volume replacement with artificial colloids yielded hemodynamic stability and adequate tissue oxygen supply, whereas administration of crystalloids alone jeopardized tissue perfusion and oxygenation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3