Accuracy of Pharmacokinetic Models for Predicting Plasma Fentanyl Concentrations in Lean and Obese Surgical Patients

Author:

Shibutani Kinichi1,Inchiosa Mario A.2,Sawada Keisuke3,Bairamian Mosses4

Affiliation:

1. Professor Emeritus of Anesthesiology.

2. Professor of Pharmacology, Research Professor of Anesthesiology, New York Medical College, Valhalla, New York.

3. Assistant Professor, Department of Anesthesia and Intensive Care, Nagoya University, Nagoya, Japan.

4. Assistant Professor of Anesthesiology, New York Medical College, Valhalla, New York.

Abstract

Background The currently available pharmacokinetic models for fentanyl were derived from normal weight patients and were not scaled to body weight. Their application to obese patients may cause overprediction of the plasma concentration of fentanyl. This study examined the influence of body weight on the predictive accuracy of two models (Anesthesiology 1990; 73:1091-102 and J Pharmacol Exp Ther 1987; 240:159-66). Further, we attempted to derive suggested dosing mass weights for fentanyl that improved predicted accuracy. Method Seventy patients undergoing major elective surgery with total body weight (TBW) <85 kg and body mass index <30 (Group L) and 39 patients with TBW >/=85 kg and body mass index >30 (Group O) were studied. In Group L and Group O, the mean TBW was 69 kg, and 125 kg, respectively and the mean body mass index in Group L and Group O was 24 and 44, respectively. Fentanyl infusion was used during surgery and postoperatively for analgesia. Plasma fentanyl concentrations were measured and predicted concentrations were obtained by computer simulation; 465 pairs of measured and predicted values were obtained. Results The influence of TBW on the performance errors of the original two models was examined with nonlinear regression analysis. Shafer error versus TBW showed a highly significant negative relationship (R squared = 0.689, P < 0.001); i.e., the Shafer model systematically overestimated fentanyl concentration as weight increased. The Scott and Stanski model showed greater variation (R squared = 0.303). We used the exponential equation for Shafer performance error versus TBW to derive suggested dosing weights ("pharmacokinetic mass") for obese patients. The pharmacokinetic mass versus TBW curve was essentially linear below 100 kg (with slope of 0.65) and approached a plateau above 140 kg. For patients weighing 140 to 200 kg, dosing weights of 100-108 kg are projected. Total body clearance (ml/min) showed a strong linear correlation with pharmacokinetic mass (r = 0.793; P < 0.001), whereas the relationship with TBW was nonlinear. Conclusion Actual body weight overestimates fentanyl dose requirements in obese patients. Dosing weight (pharmacokinetic mass) derived from the nonlinear relationship between prediction error and TBW proved to have a linear relationship with clearance.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference17 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3