Anesthetic Preconditioning Improves Adenosine Triphosphate Synthesis and Reduces Reactive Oxygen Species Formation in Mitochondria after Ischemia by a Redox Dependent Mechanism

Author:

Novalija Enis1,Kevin Leo G.2,Eells Janis T.3,Henry Michele M.4,Stowe David F.5

Affiliation:

1. Instructor, Departments of Anesthesiology and Physiology.

2. Research Fellow, Department of Anesthesiology.

3. Associate Professor.

4. Research Associate, Department of Pharmacology and Toxicology, Professor, Departments of Anesthesiology and Physiology, Cardiovascular Research Center, Medical College of Wisconsin, and Research Service, Veterans Affairs Medical Center.

5. Adjunct Professor, Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin.

Abstract

Background Mitochondrial changes that characterize the heart after anesthetic preconditioning (APC) or the mechanisms by which mitochondrial triggering factors lead to protection are unknown. This study hypothesized that generation of reactive oxygen species (ROS) during APC is required to initiate the mitochondrial protective effects, and that APC leads to improved mitochondrial electron transport chain function and cardiac function during reperfusion. Methods Isolated guinea pig hearts were subject to 30 min ischemia and 120 min reperfusion. Prior to ischemia hearts were either untreated (I/R), or treated with sevoflurane (APC), in the presence or absence of the ROS scavenger tiron (TIR), or the superoxide dismutase mimetic MnTBAP (TBAP). Intracellular ROS were measured by spectrofluorometry using the fluorescent probe dihydroethidium (DHE). In another series of experiments, using the same protocol, hearts were reperfused for only 5 min and removed for measurement of adenosine triphosphate (ATP) synthesis by luciferin-luciferase luminometry and ROS generation by dichlorohydro-fluorescein (DCF) fluorescence in isolated mitochondria. Results The APC improved cardiac function and reduced infarction. Tiron or MnTBAP abrogated the protection afforded by APC. Mitochondrial ATP synthesis was decreased by 70 +/- 3% after IR alone, by only 7 +/- 3% after APC, by 69 +/- 2% after APC+TIR, and by 71 +/- 3% after APC + TBAP. Mitochondrial ROS formation (DCF) increased by 48 +/- 3% after IR alone, by 0 +/- 2% after APC, by 43 +/- 4% after APC + TIR, and by 46 +/- 3% after APC + TBAP. ROS generation (DHE) was increased in I/R group at 5 and 120 min reperfusion. This was attenuated by APC but this protective effect was abrogated in APC + TIR and APC + TBAP groups. Conclusions The results indicate that ROS are central both in triggering and mediating APC, and that the mitochondrion is the target for these changes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3