Translocation of Protein Kinase C Isoforms to Subcellular Targets in Ischemic and Anesthetic Preconditioning

Author:

Uecker Marina1,da Silva Rafaela1,Grampp Thomas2,Pasch Thomas3,Schaub Marcus C.4,Zaugg Michael5

Affiliation:

1. Ph.D. Student.

2. Laboratory Technician.

3. Professor and Chairman.

4. Professor of Pharmacology, Institute of Pharmacology and Toxicology, University of Zurich.

5. Head of Cardiovascular Anesthesia Laboratory, Institute of Anesthesiology, University Hospital Zurich.

Abstract

Background Translocation of protein kinase C (PKC) to subcellular targets is a pivotal signaling step in ischemic preconditioning (IPC). However, to date, it is unknown whether PKC isoforms translocate in anesthetic preconditioning (APC). Methods The PKC blockers chelerythrine and rottlerin and the adenosine triphosphate-dependent potassium (K(ATP)) channel blockers HMR-1098 and 5-hydroxydecanoate were used to assess the role of PKC and K(ATP) channels in isolated perfused rat hearts subjected to IPC or APC (1.5 minimum alveolar concentration isoflurane) followed by 40 min of ischemia and 30 min of reperfusion. Immunohistochemical techniques were used to visualize PKC translocation after preconditioning. In addition, the phosphorylation status of PKC isoforms was assessed. Results Chelerythrine, rottlerin, and 5-hydroxydecanoate blocked IPC and APC with respect to functional recovery, albeit IPC at higher concentrations. HMR-1098 did not affect IPC or APC. PKCdelta and PKCepsilon translocated to nuclei in both IPC and APC, which was inhibited by chelerythrine and rottlerin. PKCdelta translocated to mitochondria but not to the sarcolemma, and PKCepsilon translocated to the sarcolemma and intercalated disks but not to mitochondria. Interestingly, PKCepsilon was accumulated at the intercalated disks in control and preconditioned hearts. Phosphorylation of PKCdelta on serine643 was increased in IPC and APC and blocked by chelerythrine and rottlerin, whereas phosphorylation of PKCdelta on threonine505 was increased only in IPC and not blocked by chelerythrine or rottlerin. PKCepsilon on serine729 did not change its phosphorylation status. Conclusions This study indicates that translocation of PKCdelta plays a pivotal role in IPC and APC and suggests that phosphorylation of PKCdelta on serine643 may be of particular relevance in transferring the APC stimulus to mitochondrial K(ATP) channels.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference45 articles.

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3