Propofol Decreases Myofilament Ca2+Sensitivity via  a Protein Kinase C–, Nitric Oxide Synthase–dependent Pathway in Diabetic Cardiomyocytes

Author:

Wickley Peter J.1,Shiga Toshiya2,Murray Paul A.3,Damron Derek S.4

Affiliation:

1. Graduate Student, Physiology, Kent State University, Kent, Ohio.

2. Research Fellow.

3. Carl E. Wasmuth Endowed Chair and Director.

4. Assistant Professor, Center for Anesthesiology Research, Division of Anesthesiology, Critical Care Medicine, and Comprehensive Pain Management, The Cleveland Clinic Foundation.

Abstract

Background The authors' objective was to assess the role of protein kinase C (PKC) and nitric oxide synthase (NOS) in mediating the effects of propofol on diabetic cardiomyocyte contractility, intracellular free Ca2+ concentration ([Ca2+]i), and myofilament Ca2+ sensitivity. Methods Freshly isolated ventricular myocytes were obtained from normal and diabetic rat hearts. [Ca2+]i and cell shortening were simultaneously measured in electrically stimulated, ventricular myocytes using fura-2 and video-edge detection, respectively. Actomyosin adenosine triphosphatase activity and troponin I (TnI) phosphorylation were assessed in [32P]orthophosphate-labeled myofibrils. Western blot analysis was used to assess expression of PKC and NOS. Results Propofol (10 microM) decreased peak shortening by 47 +/- 6% with little effect on peak [Ca2+]i (92 +/- 5% of control) in diabetic myocytes. Maximal actomyosin adenosine triphosphatase activity was reduced by 43 +/- 7% and TnI phosphorylation was greater (32 +/- 6%) in diabetic myofibrils compared with normal. Propofol reduced actomyosin adenosine triphosphatase activity by 17 +/- 7% and increased TnI phosphorylation in diabetic myofibrils. PKC inhibition prevented the propofol-induced increase in TnI phosphorylation and decrease in shortening. Expression of PKC-alpha, PKC-delta, PKC-epsilon, and constitutive NOS were up-regulated and inducible NOS was expressed in diabetic cardiomyocytes. NOS inhibition attenuated the propofol-induced decrease in shortening. Conclusion Myofilament Ca2+ sensitivity and, to a lesser extent, peak [Ca2+]i are decreased in diabetic cardiomyocytes. Increases in PKC and NOS expression in combination with TnI phosphorylation seem to contribute to the decrease in [Ca2+]i and myofilament Ca2+ sensitivity. Propofol decreases [Ca2+]i and shortening via a PKC-, NOS-dependent pathway.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3