A Genetic Analysis of Opioid-induced Hyperalgesia in Mice

Author:

Liang De-Yong1,Liao Guochun2,Wang Jianmei3,Usuka Jonathan4,Guo YingYing5,Peltz Gary6,Clark J David7

Affiliation:

1. Life Sciences Research Associate, Department of Anesthesiology, Stanford University.

2. Principal Research Scientist.

3. Research Statistician.

4. Research Leader.

5. Postdoctoral Fellow.

6. Head of Genetics and Genomics, Department of Genetics and Genomics, Roche Palo Alto, Palo Alto, California.

7. Associate Professor, Department of Anesthesiology, Stanford University; Veterans Affairs Palo Alto Health Care System, Palo Alto, California.

Abstract

Background Opioid-induced hyperalgesia (OIH) is a syndrome of increased sensitivity to noxious stimuli, seen after both the acute and chronic administration of opioids, that has been observed in humans and rodent models. This syndrome may reduce the clinical utility of opioids in treating acute and chronic pain. Methods In these studies, the authors measured the propensity of 15 strains of inbred mice to develop mechanical manifestations of OIH. These data were subjected to in silico genetic analysis, which resulted in the association of haplotypic blocks within or near several known genes. Both pharmacologic agents and transgenic mice were used to confirm the functional association of the most strongly linked gene with OIH. Results Both baseline mechanical nociceptive thresholds and the percentage changes in these thresholds after 4 days of morphine treatment were found to be highly strain dependent. The haplotypic blocks most strongly associated with the mechanical OIH data were located within the beta2 adrenergic receptor gene (beta2-AR). Using the selective beta2-AR antagonist butoxamine, the authors observed a dose-dependent reversal of OIH. Furthermore, deletion of the beta2-AR gene sharply reduced the mechanical allodynia present after morphine treatment in the wild-type mouse strain. Analysis of the associated beta2-AR haplotypic block identified single nucleotide polymorphisms potentially explaining in part the strain specific differences in OIH. Conclusions Genetic variants of the beta2-AR gene seem to explain some part of the differences between various strains of mice to develop OIH. The association of this gene with OIH suggests specific pharmacologic strategies for reducing the impact of OIH on patients consuming opioids.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3