Corticotropin-releasing Factor Mediates the Antinociceptive Action of Nitrous Oxide in Rats

Author:

Sawamura Shigehito1,Obara Mizuki2,Takeda Kenji2,Maze Mervyn3,Hanaoka Kazuo4

Affiliation:

1. Assistant Professor.

2. Postdoctoral Clinical Fellow.

3. Professor and Chairman, Department of Anaesthetics and Intensive Care, Imperial College, London, United Kingdom.

4. Professor and Chairman, Department of Anesthesiology, Tokyo University Hospital.

Abstract

Background Exposure to nitrous oxide activates brainstem noradrenergic nuclei and descending inhibitory pathways, which produce the acute antinociceptive action of nitrous oxide. Because corticotropin-releasing factor (CRF) can produce activation of noradrenergic neurons in the locus ceruleus, the authors sought to determine whether it might be responsible for the antinociceptive action of nitrous oxide. Methods Male Sprague-Dawley rats (250-300 g) were exposed for 60 min to room air or 25, 50 or 70% nitrous oxide in oxygen. Brain sections including the hypothalamus were immunostained for both c-Fos (a marker of neuronal activation) and CRF and the percentage of CRF-positive neurons expressing c-Fos was determined. The functional consequences of changes in CRF were investigated by assessing the effect of intracerebroventricular administration of a CRF antagonist (alpha-helical CRF9-41, 20 microg/10 microl) on both activation of locus ceruleus noradrenergic neurons and the antinociception (with the tail-flick latency test) produced by nitrous oxide. Results Inhalation of nitrous oxide induced a dose-dependent increase in c-Fos expression in CRF-positive neurons in the paraventricular nucleus of the hypothalamus. Intracerebroventricular administration of CRF antagonist inhibited nitrous oxide-induced c-Fos expression in the locus ceruleus and the antinociceptive effect of nitrous oxide. Conclusions Nitrous oxide activates the CRF system in the brain, which results in stimulation of noradrenergic neurons in the locus ceruleus and its consequent antinociceptive effect.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference43 articles.

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3