Effects of Subanesthetic Doses of Ketamine on Regional Cerebral Blood Flow, Oxygen Consumption, and Blood Volume in Humans

Author:

Långsjö Jaakko W.1,Kaisti Kaike K.2,Aalto Sargo1,Hinkka Susanna3,Aantaa Riku4,Oikonen Vesa5,Sipilä Hannu6,Kurki Timo7,Silvanto Martti8,Scheinin Harry9

Affiliation:

1. Investigator.

2. Anesthesiologist.

3. Statistician, Department of Biostatistics.

4. Administrative Chief, Department of Anesthesiology and Intensive Care.

5. Modeller.

6. Radiochemist, Turku PET Centre.

7. Radiologist, Department of Radiology, Turku University Hospital, Turku, Finland.

8. Senior Investigator, Research Institute for Military Medicine, Central Military Hospital, Helsinki, Finland.

9. Professor, Turku PET Centre and Department of Pharmacology and Clinical Pharmacology, University of Turku.

Abstract

Background Animal experiments have demonstrated neuroprotection by ketamine. However, because of its propensity to increase cerebral blood flow, metabolism, and intracranial pressure, its use in neurosurgery or trauma patients has been questioned. Methods 15O-labeled water, oxygen, and carbon monoxide were used as positron emission tomography tracers to determine quantitative regional cerebral blood flow (rCBF), metabolic rate of oxygen (rCMRO2), and blood volume (rCBV), respectively, on selected regions of interest of nine healthy male volunteers at baseline and during three escalating concentrations of ketamine (targeted to 30, 100, and 300 ng/ml). In addition, voxel-based analysis for relative changes in rCBF and rCMRO2 was performed using statistical parametric mapping. Results The mean +/- SD measured ketamine serum concentrations were 37 +/- 8, 132 +/- 19, and 411 +/- 71 ng/ml. Mean arterial pressure was slightly elevated (maximally by 15.3%, P < 0.001) during ketamine infusion. Ketamine increased rCBF in a concentration-dependent manner. In the region-of-interest analysis, the greatest absolute changes were detected at the highest ketamine concentration level in the anterior cingulate (38.2% increase from baseline, P < 0.001), thalamus (28.5%, P < 0.001), putamen (26.8%, P < 0.001), and frontal cortex (25.4%, P < 0.001). Voxel-based analysis revealed marked relative rCBF increases in the anterior cingulate, frontal cortex, and insula. Although absolute rCMRO2 was not changed in the region-of-interest analysis, subtle relative increases in the frontal, parietal, and occipital cortices and decreases predominantly in the cerebellum were detected in the voxel-based analysis. rCBV increased only in the frontal cortex (4%, P = 0.022). Conclusions Subanesthetic doses of ketamine induced a global increase in rCBF but no changes in rCMRO2. Consequently, the regional oxygen extraction fraction was decreased. Disturbed coupling of cerebral blood flow and metabolism is, however, considered unlikely because ketamine has been previously shown to increase cerebral glucose metabolism. Only a minor increase in rCBV was detected. Interestingly, the most profound changes in rCBF were observed in structures related to pain processing.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3