Anesthetic Potency and Influence of Morphine and Sevoflurane on Respiration in μ-Opioid Receptor Knockout Mice

Author:

Dahan Albert1,Sarton Elise2,Teppema Luc1,Olievier Cees3,Nieuwenhuijs Diederik4,Matthes Hans W. D.1,Kieffer Brigitte L.5

Affiliation:

1. Associate Professor.

2. Staff Anesthesiologist.

3. Research Assistant.

4. NWO Graduate Student, Departments of Anesthesiology and Physiology, Leiden University Medical Center.

5. Full Professor, UPR 9050 CNRS, ESBS Université Louis Pasteur.

Abstract

Background The involvement of the mu-opioid receptor (muOR) system in the control of breathing, anesthetic potency, and morphine- and anesthesia-induced respiratory depression was investigated in mice lacking the muOR. Methods Experiments were performed in mice lacking exon 2 of the muOR gene (muOR-/-) and their wild-type littermates (muOR+/+). The influence of saline, morphine, naloxone, and sevoflurane on respiration was measured using a whole body plethysmographic method during air breathing and elevations in inspired carbon dioxide concentration. The influence of morphine and naloxone on anesthetic potency of sevoflurane was determined by tail clamp test. Results Relative to wild-type mice, muOR-deficient mice displayed approximately 15% higher resting breathing frequencies resulting in greater resting ventilation levels. The slope of the ventilation-carbon dioxide response did not differ between genotypes. In muOR+/+ but not muOR-/- mice, a reduction in resting ventilation and slope, relative to placebo, was observed after 100 mg/kg morphine. Naloxone increased resting ventilation and slope in both genotypes. Sevoflurane at 1% inspired concentration induced similar reductions in resting ventilation and slope in the two genotypes. Anesthetic potency was 20% lower in mutant relevant to wild-type mice. Naloxone and morphine caused an increase and decrease, respectively, in anesthetic potency in muOR+/+ mice only. Conclusions The data indicate the importance of the endogenous opioid system in the physiology of the control of breathing with only a minor role for the muOR. The muOR gene is the molecular site of action of the respiratory effects of morphine. Anesthetic potency is modulated by the endogenous mu-opioid system but not by the kappa- and delta-opioid systems.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3