Halothane and Diazepam Inhibit Ketamine-induced c-fos Expression in the Rat Cingulate Cortex

Author:

Nakao Shin-ichi,Adachi Takehiko,Murakawa Masahiro,Shinomura Tetsutaro,Kurata Jiro,Shichino Tsutomu,Shibata Masatoshi,Tooyama Ikuo,Kimura Hiroshi,Mori Kenjiro

Abstract

Background Ketamine, a noncompetitive N-methyl-D-aspartate antagonist, has psychotomimetic side effects. Recent studies have shown that noncompetitive N-methyl-D-aspartate antagonists cause morphologic damage to the cingulate and retrosplenial cortices and induce c-fos protein (c-Fos) in the same regions. Although benzodiazepines are effective in preventing these side effects, the neural basis of the drug interactions has not been established. Methods The effects of diazepam and halothane on c-Fos expression induced by ketamine were studied. Diazepam (1 and 5 mg/kg) or vehicle were administered subcutaneously, followed 7 min later by 100 mg/kg ketamine given intraperitoneally. Halothane (1.0 and 1.8%), was administered continuously from 10 min before ketamine administration until brain fixation. Two hours after ketamine injection, rats were perfused and their brains fixed and extracted. Brain sections were prepared in a cryostat and c-Fos expression was detected using immunohistochemical methods. Results Ketamine induced c-Fos-like immunoreactivity in the cingulate and retrosplenial cortices, thalamus, and neocortex. Diazepam suppressed the ketamine-induced c-Fos-like immunoreactivity in the cingulate and retrosplenial cortices in a dose-dependent manner, leaving the thalamus and neocortex less affected. Halothane suppressed the ketamine-induced c-Fos-like immunoreactivity in the cingulate and retrosplenial cortices and the neocortex in a dose-dependent manner, leaving the thalamus relatively unaffected. Conclusion Halothane and diazepam inhibited ketamine-induced c-Fos expression in the cingulate and retrosplenial cortices, leaving the thalamus relatively unaffected.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3