Effects of Xenon on In Vitro  and In Vivo  Models of Neuronal Injury

Author:

Wilhelm Stefan1,Ma Daqing1,Maze Mervyn2,Franks Nicholas P.3

Affiliation:

1. Postdoctoral Research Fellow, Chelsea & Westminster Hospital.

2. Sir Ivan Magill Professor of Anaesthetics.

3. Professor of Biophysics and Anaesthetics, Chelsea & Westminster Hospital, and the Biophysics Group, The Blackett Laboratory, Imperial College of Science, Technology and Medicine.

Abstract

Background Xenon, the "inert" gaseous anesthetic, is an antagonist at the N-methyl-D-aspartate (NMDA)-type glutamate receptor. Because of the pivotal role that NMDA receptors play in neuronal injury, the authors investigated the efficacy of xenon as a neuroprotectant in both in vitro and in vivo paradigms. Methods In a mouse neuronal-glial cell coculture, injury was provoked either by NMDA, glutamate, or oxygen deprivation and assessed by the release of lactate dehydrogenase into the culture medium. Increasing concentrations of either xenon or nitrogen (10-75% of an atmosphere) were coadministered and maintained until injury was assessed. In separate in vivo experiments, rats were administered N-methyl-dl-aspartate and killed 3 h later. Injury was quantified by histologic assessment of neuronal degeneration in the arcuate nucleus of the hypothalamus. Results Xenon exerted a concentration-dependent protection against neuronal injury provoked by NMDA (IC(50) = 19 +/- 6% atm), glutamate (IC(50) = 28 +/- 8% atm), and oxygen deprivation (IC(50) = 10 +/- 4% atm). Xenon (60% atm) reduced lactate dehydrogenase release to baseline concentrations with oxygen deprivation, whereas xenon (75% atm) reduced lactate dehydrogenase release by 80% with either NMDA- or glutamate-induced injury. In an in vivo brain injury model in rats, xenon exerted a concentration-dependent protective effect (IC(50) = 78 +/- 8% atm) and reduced the injury by 45% at the highest xenon concentration tested (75% atm). Conclusions Xenon, when coadministered with the injurious agent, exerts a concentration-dependent neuroprotective effect at concentrations below which anesthesia is produced in rodents. Unlike either nitrous oxide or ketamine (other anesthetics with NMDA antagonist properties), xenon is devoid of both neurotoxicity and clinically significant adverse hemodynamic properties. Studies are proposed to determine whether xenon can be used as a neuroprotectant in certain clinical settings.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3