Sevoflurane Inhibits Human Platelet Aggregation and Thromboxane A2Formation, Possibly by Suppression of Cyclooxygenase Activity

Author:

Hirakata Hideo,Ushikubi Fumitaka,Toda Hiroshi,Nakamura Kumi,Sai Satoko,Urabe Nobukata,Hatano Yoshio,Narumiya Shuh,Mori Kenjiro

Abstract

Background Halothane increases bleeding time and suppresses platelet aggregation in vivo and in vitro. A previous study by the authors suggests that halothane inhibits platelet aggregation by reducing thromboxane (TX) A2 receptor-binding affinity. However, no studies of the effects of sevoflurane on platelet aggregation have been published. Methods The effects of sevoflurane, halothane, and isoflurane were examined at doses of 0.13-1.4 mM. Human platelet aggregation was induced by adenosine diphosphate, epinephrine, arachidonic acid, prostaglandin G2, and a TXA2 agonist ([+]-9, 11-epithia-11, 12-methano-TXA2, STA2) and measured by aggregometry. Platelet TXB2 levels were measured by radioimmunoassay, and the ligand-binding characteristics of the TXA2 receptors were examined by Scatchard analysis using a [3H]-labeled TXA2 receptor antagonist (5Z-7-(3-endo-([ring-4-[3H] phenyl) sulphonylamino-[2.2.1.] bicyclohept-2-exo-yl) heptenoic acid, [3H]S145). Results Isoflurane (0.28-0.84 mM) did not significantly affect platelet aggregation induced by adenosine diphosphate and epinephrine. Sevoflurane (0.13-0.91 mM) and halothane (0.49-1.25 mM) inhibited secondary platelet aggregation induced by adenosine diphosphate (1-10 microM) and epinephrine (1-10 microM) without altering primary aggregation. Sevoflurane (0.13 mM) also inhibited arachidonic acid-induced aggregation, but not that induced by prostaglandin G2 or STA2, although halothane (0.49 mM) inhibited the latter. Sevoflurane (3 mM) did not affect the binding of [3H]S145 to platelets, whereas halothane (3.3 mM) suppressed it strongly. Sevoflurane (0.26 mM) and halothane (0.98 mM) strongly suppressed TXB2 formation by arachidonic acid-stimulated platelets. Conclusions The findings that sevoflurane suppressed the effects of arachidonic acid, but not those of prostaglandin G2 and STA2, suggest strongly that sevoflurane inhibited TXA2 formation by suppressing cyclooxygenase activity. Halothane appeared to suppress both TXA2 formation and binding to its receptors. Sevoflurane has strong antiaggregatory effects at subanesthetic concentrations (greater than 0.13 mM; i.e., approximately 0.5 vol/%), whereas halothane has similar effects at somewhat greater anesthetic concentrations (0.49 mM; i.e., approximately 0.54 vol/%). Isoflurane at clinical concentration (0.84 mM; i.e., approximately 1.82 vol/%) does not affect platelet aggregation significantly.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference17 articles.

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3