Mechanical Significance of Respiratory Muscle Activity in Humans during Halothane Anesthesia

Author:

Warner David O.,Warner Mark A.,Ritman Erik L.

Abstract

Background Prior human studies have shown that halothane attenuates activity in the parasternal intercostal muscle and enhances phasic activity in respiratory muscles with expiratory actions. This expiratory muscle activity could contribute to reductions in the functional residual capacity produced by anesthesia. Termination of this activity could contribute to the maintenance of inspiratory rib cage expansion. The purpose of this study was to estimate in humans the mechanical significance of expiratory muscle activity during halothane anesthesia and to search for the presence of scalene muscle activity during halothane anesthesia that might contribute to inspiratory rib cage expansion. Methods Six subjects (3 males, 3 females) were studied while awake and during 1.2 MAC halothane anesthesia, both during quiet breathing and during carbon dioxide rebreathing. Respiratory muscle activity was measured using fine-wire electromyography electrodes. Chest wall configuration was determined using images of the thorax obtained by three-dimensional, fast computed tomography and respiratory impedance plethysmography. Functional residual capacity was measured by a nitrogen dilution technique. Measurements were obtained after paralysis with 0.1 mg/kg vecuronium and mechanical ventilation. Results Phasic inspiratory activity was present in the scalene muscle of four anesthetized subjects during quiet breathing and all anesthetized subjects during rebreathing. Phasic inspiratory activity was present in the parasternal intercostal muscle during halothane anesthesia in only the three female subjects and was enhanced by rebreathing; parasternal intercostal muscle activity was never present in anesthetized males. During anesthesia with quiet breathing, phasic expiratory activity was observed in the transversus abdominis muscles of only the three male subjects. Despite these differences in the pattern of respiratory muscle use, the pattern of chest wall responses to rebreathing was similar between males and females. When expiratory muscle activity was present, paralysis increased the end-expiratory thoracic volume by expanding the rib cage, demonstrating that this activity reduced thoracic volume in these subjects. Changes in thoracic blood volume were significant determinants of the change in functional residual capacity produced by paralysis. Conclusions In humans anesthetized with 1.2 MAC end-tidal halothane, there are marked interindividual differences in respiratory muscle use during quiet breathing that may be related to sex; phasic inspiratory scalene muscle and parasternal intercostal muscle activity may contribute to inspiratory rib cage expansion in some subjects; and when present, expiratory muscle activity significantly constricts the rib cage and contributes to reductions in functional residual capacity caused by halothane anesthesia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference41 articles.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3