The Effect of Thiopental and Propofol on NMDA- and AMPA-mediated Glutamate Excitotoxicity

Author:

Zhu Hechen,Cottrell James E.,Kass Ira S.

Abstract

Background Glutamate excitotoxicity has been implicated as an important cause of ischemic, anoxic, epileptic, and traumatic neuronal damage. Glutamate receptor antagonists have been shown to reduce anoxic, ischemic, and epileptic damage. The effects of thiopental and propofol on N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionate (AMPA)-induced neuronal damage were investigated in this study. Methods The Schaffer collateral pathway was stimulated, and a postsynaptic-evoked population spike was recorded from the CA1 pyramidal cell layer of rat hippocampal slices. The recovery of the population spike amplitude was an indicator of neuronal viability. The duration of NMDA (25 microM) or AMPA (15 or 10 microM) treatment was 10 min. Thiopental (600 microM), propofol (112 microM), or the vehicle was present 15 min before, during, and 10 min after the NMDA or AMPA treatment. Results Thiopental prolonged the time required to completely block the population spike after the addition of NMDA or AMPA. Thiopental improved the recovery of the population spike after 25 microM NMDA (79% vs. 44%) and 15 microM AMPA (50% vs. 15%). Propofol worsened the recovery of the population spike from NMDA-induced damage. The recovery was 8% with propofol compared with 40% with NMDA alone. Propofol did not significantly alter the AMPA-induced neuronal damage. Conclusions Thiopental attenuates NMDA- and AMPA-mediated glutamate excitotoxicity. This may be one way barbiturates reduce anoxic, ischemic, and epileptic damage. Propofol enhances NMDA-induced neuronal damage. These results demonstrate that thiopental and propofol have different properties with respect to glutamate excitotoxicity.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference45 articles.

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3