Mechanisms of Direct Inhibitory Action of Ketamine on Vascular Smooth Muscle in Mesenteric Resistance Arteries

Author:

Akata Takashi1,Izumi Kaoru2,Nakashima Mikio3

Affiliation:

1. Lecturer.

2. Postgraduate Student, Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Kyushu University.

3. Associate Professor, Surgical Operating Center, Saga Medical School, Saga, Japan.

Abstract

Background Ketamine was previously suggested to relax vascular smooth muscle by reducing the intracellular Ca2+ concentration ([Ca2+]i). However, no direct evidence is available to indicate that ketamine reduces the [Ca2+]i in vascular smooth muscle of systemic resistance arteries. Methods Endothelium-intact or -denuded smooth muscle strips were prepared from rat small mesenteric arteries. Isometric force and [Ca2+]i were measured simultaneously in the fura-2-loaded, endothelium-denuded strips. In some experiments, only isometric force was measured in either the endothelium-intact or beta-escin-treated, endothelium-denuded strips. Results In the endothelium-intact strips, lower concentrations (< or = 30 microm) of ketamine slightly enhanced norepinephrine-induced contraction, whereas higher concentrations (> or = 100 microM) of ketamine inhibited both norepinephrine- and KCl-induced contractions. In the fura-2-loaded strips, ketamine (> or = 100 microM) inhibited the increases in both [Ca2+]i and force induced by either norepinephrine or KCl. Ketamine also inhibited the norepinephrine-induced increase in [Ca2+]i after treatment with ryanodine. In the absence of extracellular Ca2+, ketamine notably inhibited the norepinephrine-induced increase in [Ca2+]i, whereas it only minimally inhibited caffeine-induced increase in [Ca2+]i. Ketamine had little influence on the [Ca2+]i-force relation during force development to stepwise increment of extracellular Ca2+ concentration during either KCl depolarization or norepinephrine stimulation. Ketamine did not affect Ca2+-activated contractions in the beta-escin membrane-permeabilized strips. Conclusions The action of ketamine on contractile response to norepinephrine consists of endothelium-dependent vasoconstricting and endothelium-independent vasodilating components. The direct vasorelaxation is largely a result of reduction of[Ca2+]i in vascular smooth muscle cells. The [Ca2+]i-reducing effects are caused by inhibitions of both voltage-gated Ca2+ influx and norepinephrine-induced Ca2+ release from the intracellular stores.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference50 articles.

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3