Selective γ-Aminobutyric Acid Type A Receptor Antagonism Reverses Isoflurane Ischemic Neuroprotection

Author:

Elsersy Hazem1,Mixco Javier2,Sheng Huaxin3,Pearlstein Robert D.4,Warner David S.5

Affiliation:

1. Research Associate.

2. Medical Student, Duke University School of Medicine.

3. Assistant Research Professor, Department of Anesthesiology.

4. Assistant Research Professor, Department of Surgery.

5. Professor, Departments of Anesthesiology, Neurobiology, and Surgery, Duke University Medical Center.

Abstract

Background Isoflurane provides protection against severe forebrain ischemia in the rat. The authors hypothesized that this is attributable to interaction with the gamma-aminobutyric acid type A (GABAA) receptor resulting in altered time to onset of ischemic hippocampal depolarization. Methods Organotypic hippocampal slices were subjected to oxygen-glucose deprivation in the presence of isoflurane and combinations of GABAA (bicuculline) and GABAB (phaclofen) receptor antagonists. Cell death was measured. Rats were subjected to severe forebrain ischemia while anesthetized with fentanyl-nitrous oxide or 1.4% isoflurane. In the isoflurane group, rats also received intravenous bicuculline (0, 1, or 2 mg/kg). Neurologic and histologic outcomes and time to depolarization were assessed. Results In slices, 2% isoflurane caused near-complete protection against oxygen-glucose deprivation. This was unaffected by coadministration of phaclofen but largely reversed by bicuculline. The GABAA agonist muscimol was also protective, having an effect equivalent to 1% isoflurane. In rats, isoflurane (0 mg bicuculline) improved neurologic and histologic outcome versus fentanyl-nitrous oxide (CA1 percentage of alive neurons: fentanyl-nitrous oxide, 15 +/- 7; isoflurane, 61 +/- 24). The isoflurane effect was reversed in a dose-dependent manner by bicuculline (CA1 percentage alive: 1 mg/kg, 44 +/- 22; 2 mg/kg, 21 +/- 15). Time to depolarization was delayed with isoflurane versus fentanyl-nitrous oxide (137 vs. 80 s) but was not affected by bicuculline (149 s). In contrast, postischemic time to repolarization was more rapid with fentanyl-nitrous oxide or isoflurane plus bicuculline versus isoflurane alone. Conclusions These studies are consistent with the hypothesis that the GABAA receptor serves as a major site of action for isoflurane neuroprotection both in vitro and in vivo. However, the mechanism by which this interaction confers in vivo protection cannot be attributed to effects on the duration of ischemic depolarization.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3