Painful Peripheral Nerve Injury Decreases Calcium Current in Axotomized Sensory Neurons

Author:

McCallum J Bruce1,Kwok Wai-Meng2,Sapunar Damir3,Fuchs Andreas4,Hogan Quinn H.5

Affiliation:

1. Research Scientist.

2. Associate Professor, Department of Anesthesiology, Medical College of Wisconsin.

3. Associate Professor, Department of Anatomy, Histology, and Embryology, Split Medical School, Split, Croatia.

4. Oberartz, Anesthesia, Medical University of Graz, Graz, Austria.

5. Professor, Department of Anesthesiology, Medical College of Wisconsin; Milwaukee Veterans Administration Hospital, Milwaukee, Wisconsin.

Abstract

Background Reports of Ca(2+) current I(Ca) loss after injury to peripheral sensory neurons do not discriminate between axotomized and spared neurons. The spinal nerve ligation model separates axotomized from spared neurons innervating the same site. The authors hypothesized that I(Ca) loss is a result of neuronal injury, so they compared axotomized L5 dorsal root ganglion neurons to spared L4 neurons, as well as neurons from rats undergoing skin incision alone. Methods After behavioral testing, dissociated neurons from L4 and L5 dorsal root ganglia were studied in both current and voltage patch clamp modes. The biophysical consequence of I(Ca) loss on the action potential was confirmed using selective I(Ca) antagonists. Data were grouped into small, medium, and large cells for comparison. Results Reduced I(Ca) was predominantly a consequence of axotomy (L5 after spinal nerve ligation) and was most evident in small and medium neurons. ICa losses were associated with action potential prolongation in small and medium cells, whereas the amplitude and duration of after hyperpolarization was reduced in medium and large neurons. Blockade with Ca(2+) channel antagonists showed that action potential prolongation and after hyperpolarization diminution were alike, attributable to the loss of I(Ca). Conclusion Axotomy is required for I(Ca) loss. I(Ca) loss correlated with changes in the biophysical properties of sensory neuron membranes during action potential generation, which were due to I(Ca) loss leading to decreased outward Ca(2+)-sensitive K currents. Taken together, these results suggest that neuropathic pain may be mediated, in part, by loss of I(Ca) and the cellular processes dependent on Ca(2+).

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3