Mechanisms Underlying Greater Sensitivity of Neonatal Cardiac Muscle to Volatile Anesthetics

Author:

Prakash Y.S.1,Seckin Inanc2,Hunter Larry W.3,Sieck Gary C.4

Affiliation:

1. Associate Professor.

2. Research Fellow.

3. Associate in Anesthesiology, Department of Anesthesiology.

4. Professor, Departments of Anesthesiology and Physiology & Biophysics.

Abstract

Background In neonatal heart, plasma membrane Na+-Ca2+ exchange (NCX) and Ca2+ influx channels play greater roles in intracellular Ca2+ concentration [Ca2+]i regulation compared with the sarcoplasmic reticulum (SR). In neonatal (aged 0-3 days) and adult (aged 84 days) rat cardiac myocytes, we determined the mechanisms underlying greater sensitivity of the neonatal myocardium to inhibition by volatile anesthetics. Methods The effects of 1 and 2 minimum alveolar concentration halothane and sevoflurane on Ca2+ influx during electrical stimulation in the presence or blockade of NCX and the Ca2+ channel agonist BayK8644 were examined. [Ca2+]i responses to caffeine were used to examine anesthetic effects on SR Ca2+ release (via ryanodine receptor channels) and reuptake (via SR Ca2+ adenosine triphosphatase). Ca2+ influx via NCX was examined during rapid activation in the presence of the reversible SR Ca2+ adenosine triphosphatase inhibitor cyclopiazonic acid and ryanodine to inhibit the SR. Efflux mode NCX was examined during activation by extracellular Na+ in the absence of SR reuptake. Results Intracellular Ca2+ concentration transients during electrical stimulation were inhibited to a greater extent in neonates by halothane (80%) and sevoflurane (50%). Potentiation of [Ca2+]i responses by BayK8644 (160 and 120% control in neonates and adults, respectively) was also blunted by anesthetics to a greater extent in neonates. [Ca2+]i responses to caffeine in neonates ( approximately 30% adult responses) were inhibited to a lesser extent compared with adults (35 vs. 60% by halothane). Both anesthetics inhibited Ca2+ reuptake at 2 minimum alveolar concentration, again to a greater extent in adults. Reduction in NCX-mediated influx was more pronounced in neonates (90%) compared with adults (65%) but was comparable between anesthetics. Both anesthetics also reduced NCX-mediated efflux to a greater extent in neonates. Potentiation of NCX-mediated Ca2+ efflux by extracellular Na+ and NCX-mediated Ca2+ influx by intracellular Na+ were both prevented by halothane, especially in neonates. Conclusions These data indicate that greater myocardial depression in neonates induced by volatile anesthetics may be mediated by inhibition of NCX and Ca2+ influx channels rather than inhibition of SR Ca2+ release.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference46 articles.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Error traps in patients with congenital heart disease undergoing noncardiac surgery;Pediatric Anesthesia;2024-08-02

2. Pediatric Cardiovascular Physiology;Congenital Heart Disease in Pediatric and Adult Patients;2023

3. Cardiac Surgery;Neonatal Anesthesia;2023

4. Physiology and Cellular Biology of the Developing Circulation;Anesthesia for Congenital Heart Disease;2022-11-25

5. Developmental Physiology of the Cardiovascular System;Gregory's Pediatric Anesthesia;2020-03-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3