Affiliation:
1. Research Fellow, Division of Clinical Pharmacology, Vanderbilt University; current position: Staff Anesthesiologist, Ruprecht-Karls University, Heidelberg, Germany, and Project Leader, Global Clinical Pharmacology, Institute of Clinical Pharmacology, Bayer AG, Wuppertal, Germany.
2. Associate Professor.
3. E. M. Papper Professor and Chair, Department of Anesthesiology, Columbia University, College of Physicians & Surgeons.
4. Professor and Assistant Vice Chancellor, Division of Clinical Pharmacology, Vanderbilt University.
Abstract
Background
The efflux transporter P-glycoprotein, a member of the adenosine triphosphate-binding cassette superfamily, is a major determinant of the pharmacokinetics and pharmacodynamics of the opioid loperamide, a well-recognized antidiarrheal agent. Animal studies indicate that P-glycoprotein limits morphine entry into the brain. In this study, the authors examined whether other opioids of importance to anesthesiologists such as fentanyl, sufentanil, and alfentanil, and also morphine-6-glucuronide and morphine-3-glucuronide, are P-glycoprotein substrates and whether, in turn, these opioids act also as P-glycoprotein inhibitors.
Methods
The transcellular movement of the various opioids, including loperamide and morphine, was assessed in L-MDR1 (expressing P-glycoprotein) and LLC-PK1 cell monolayers (P-glycoprotein expression absent). A preferential basal-to-apical versus apical-to-basal transport in the L-MDR cells but not the LLC-PK1 cells is seen for P-glycoprotein substrates. In addition, the effect of the various opioids on the transcellular movement of the prototypical P-glycoprotein substrate digoxin was examined in Caco-2 cell monolayers. IC50 values were calculated according to the Hill equation.
Results
Loperamide was a substrate showing high dependence on P-glycoprotein in that basal-apical transport was nearly 10-fold greater than in the apical-basal direction in L-MDRI cells. Morphine also showed a basal-to-apical gradient in the L-MDR1 cell monolayer, indicating that it too is a P-glycoprotein substrate, but with less dependence than loperamide in that only 1.5-fold greater basal-apical directional transport was observed. Fentanyl, sufentanil, and alfentanil did not behave as P-glycoprotein substrates, whereas the morphine glucuronides did not cross the cell monolayers at all, whether P-glycoprotein was present or not. Loperamide, sufentanil, fentanyl, and alfentanil inhibited P-glycoprotein-mediated digoxin transport in Caco-2 cells with IC50 values of 2.5, 4.5, 6.5, and 112 microm, respectively. Morphine and its glucuronides (20 microm) did not inhibit digoxin (5 microm) transport in Caco-2 cells, and therefore IC50 values were not determined.
Conclusions
Opioids have a wide spectrum of P-glycoprotein activity, acting as both substrates and inhibitors, which might contribute to their varying central nervous system-related effects.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Anesthesiology and Pain Medicine
Cited by
193 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献