Isoproterenol Inhibits Transcription of Cardiac Cytokine Genes Induced by Reactive Oxygen Intermediates

Author:

Newman Walter H.1,Castresana Manuel R.2,Webb Jerry G.3,Detmer Kristina4,Wang Zhongbiao5

Affiliation:

1. Professor, Departments of Anesthesiology and Surgery, Mercer University School of Medicine and Medical Center of Central Georgia.

2. Professor, Department of Anesthesiology, Mercer University School of Medicine and Medical Center of Central Georgia.

3. Professor, Department of Pharmacology, Medical University of South Carolina.

4. Associate Professor.

5. Research Associate, Division of Basic Medical Science, Mercer University School of Medicine and Medical Center of Central Georgia.

Abstract

Background Cytokines such as tumor necrosis factor alpha (TNF-alpha) are produced by the myocardium in heart disease and might be stimulated by reactive oxygen. In some cell types, cyclic adenosine monophosphate (AMP) inhibits TNF-alpha production. The authors tested the hypothesis that stimulation of cardiac beta-adrenergic receptors would inhibit cytokine gene transcription induced by reactive oxygen. Methods Rat hearts were perfused with buffer containing hypoxanthine. Reactive oxygen intermediates were generated by infusion of xanthine oxidase. Myocardial mRNA encoding 11 cytokines was determined. TNF-alpha, interleukin-6, and cyclic AMP were measured in the coronary effluent. Results In control hearts, of the screened RNA, only mRNA encoding interleukin-1beta, -4, and -6 was detected. Stimulation with hypoxanthine-xanthine oxidase (HX-XO) induced detectable mRNA for TNF-alpha and interleukin-5 and increased mRNA band density for interleukin-1beta, -4, and -6. Simultaneous infusion of isoproterenol inhibited HX-XO-stimulated cytokine gene expression and caused release of cyclic AMP into the coronary effluent. In control hearts, TNF-alpha was not detected in the coronary effluent. After HX-XO administration, TNF-alpha was reliably detected at 60 min and interleukin-6 at 90 min. Simultaneous infusion of isoproterenol inhibited TNF-alpha and interleukin-6 release. Inclusion of propranolol in the perfusion buffer blocked the isoproterenol-induced inhibition of HX-XO-stimulated TNF-alpha release and release of cyclic AMP into the coronary effluent. In addition, elevating myocardial cyclic AMP with forskolin also blocked release of TNF-alpha stimulated by HX-XO. Finally, delaying infusion of isoproterenol until 30 min after HX-XO administration still suppressed release of TNF-alpha. Conclusions Reactive oxygen species activate cytokine gene transcription in the myocardium. The sympathetic nervous system, acting through beta-receptors to elevate myocardial cyclic AMP, regulates cardiac cytokine production by inhibition of transcription.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3