Effects of Intravenous Anesthetic Agents on Glutamate Release

Author:

Buggy Donal J.1,Nicol Beverley2,Rowbotham David J.3,Lambert David G.4

Affiliation:

1. Senior Lecturer.

2. Research Fellow. Current position: Pfizer Central Research, Sandwich, Kent, United Kingdom.

3. Professor of Anaesthesia and Pain Management.

4. Senior Lecturer in Anaesthetic Pharmacology.

Abstract

Background Many anesthetic agents are known to enhance the alpha1beta2gamma2S gamma-aminobutyric acid type A (GABAA) chloride current; however, they also depress excitatory neurotransmission. The authors evaluated two hypotheses: intravenous anesthetic agents inhibit glutamate release and any observed inhibition may be secondary to GABAA receptor activation. Methods Cerebrocortical slices were prepared from Wistar rats. After perfusion in oxygenated Krebs buffer for 60 min at 37 degrees C, samples for glutamate assay were obtained at 2-nmin intervals. After 6 min, a 2-min pulse of 46 mM K+ was applied to the slices (S1); this was repeated after 30 min (S2). Bicuculline (1-100 microM) was applied when the S1 response returned to basal level, and 10 min later, thiopental (1-300 micro/M), propofol (10 microM), or ketamine (30 microM) were also applied until the end of S2. Perfusate glutamate concentrations were measured fluorometrically, and the area under the glutamate release curves was expressed as a ratio (S2/S1). Results Potassium (46 mM) evoked a monophasic release of glutamate during S1 and S2, with a mean control S2/S1 ratio of 1.07 +/- 0.33 (mean +/- SD, n = 96). Ketamine and thiopental produced a concentration-dependent inhibition of K+-evoked glutamate release with half-maximum inhibition of release values of 18.2 and 10.9 /microM, respectively. Release was also inhibited by propofol. Bicuculline produced a concentration dependent reversal of thiopental inhibition of glutamate release with a half-maximum reversal of the agonist effect of 10.3 microM. Bicuculline also reversed the effects of propofol but not those of ketamine. Conclusions The authors' data indicate that thiopental, propofol, and ketamine inhibit K+-evoked glutamate release from rat cerebrocortical slices. The inhibition produced by thiopental and propofol is mediated by activation of GABAA receptors, revealing a subtle interplay between GABA-releasing (GABAergic) and glutamatergic transmission in anesthetic action.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3