Evaluation of Rapid Ischemic Preconditioning in a Rabbit Model of Spinal Cord Ischemia

Author:

Kakimoto Meiko1,Kawaguchi Masahiko2,Sakamoto Takanori2,Inoue Satoki3,Furuya Hitoshi4,Nakamura Mitsutoshi2,Konishi Noboru5

Affiliation:

1. Research Fellow.

2. Assistant Professor.

3. Instructor.

4. Professor and Chair, Department of Anesthesiology.

5. Professor and Chair, Department of Pathology, Nara Medical University.

Abstract

Background Rapid ischemic preconditioning (IPC) has been shown to reduce cellular injury after subsequent cardiac and cerebral ischemia. However, the data on rapid IPC of the spinal cord is limited. The authors investigated whether pretreatment with sublethal ischemia of spinal cord can attenuate neuronal injury after spinal cord ischemia in rabbits. Methods Forty-seven male New Zealand white rabbits were randomly assigned to one of three groups (n = 15 or 16 each). In the IPC(-) group, the infrarenal aorta was occluded for 17 min to produce spinal cord ischemia. In the IPC(+) group, 5 min of aortic occlusion was performed 30 min before 17 min of spinal cord ischemia. In the sham group, the aorta was not occluded. Hind limb motor function was assessed at 3 h, 24 h, 4 days, and 7 days after reperfusion using Tarlov scoring (0 = paraplegia; 4 = normal). Animals were killed for histopathologic evaluation at 24 h or 7 days after reperfusion. The number of normal neurons in the anterior spinal cord (L4-L6) was counted. Results Neurologic scores were significantly higher in the IPC(+) group than the IPC(-) group at 3 and 24 h after reperfusion (P < 0.05). However, neurologic scores in the IPC(+) group gradually decreased and became similar to those in the IPC(-) group at 4 and 7 days after reperfusion. At 24 h after reperfusion, the numbers of normal neurons were significantly higher in the IPC (+) group than in the IPC(-) group (P < 0.05) and were similar between the IPC(+) and sham groups. At 7 days after reperfusion, there was no difference in the number of normal neurons between the IPC(+) and IPC(-) groups. Conclusion The results indicate that rapid IPC protects the spinal cord against neuronal damage 24 h but not 7 days after reperfusion in a rabbit model of spinal cord ischemia, suggesting that the efficacy of rapid IPC may be transient.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference17 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3