Lidocaine Enhances GαiProtein Function

Author:

Benkwitz Claudia1,Garrison James C.2,Linden Joel3,Durieux Marcel E.4,Hollmann Markus W.5

Affiliation:

1. Resident and Research Fellow, Department of Anesthesiology, University of Virginia; Resident and Research Fellow, Department of Anesthesiology, University of Wuerzburg, Wuerzburg, Germany.

2. Professor and Chair, Department of Pharmacology, University of Virginia.

3. Professor, Departments of Internal Medicine and Physiology, University of Virginia.

4. Professor, Department of Anesthesiology, University of Virginia; Professor, Department of Anesthesiology, University Hospital Maastricht, Maastricht, The Netherlands.

5. Resident and Assistant Professor in Research, Department of Anesthesiology, University of Virginia; Resident and Assistant Professor in Research, Department of Anesthesiology, University Hospital Maastricht, Maastricht, The Netherlands; Resident and Assistant Professor in Research, Department of Anesthesiology, University of Heidelberg, Heidelberg, Germany.

Abstract

Background Local anesthetics inhibit several G protein-coupled receptors by interaction with the Galphaq protein subunit. It is not known whether this effect on G protein function can be extrapolated to other classes of G proteins. The authors investigated interactions of lidocaine with the human adenosine 1 receptor (hA1R)-coupled signaling pathway. Activated A1Rs couple to adenylate cyclase via the pertussis toxin sensitive Galphai protein, thereby decreasing cyclic adenosine monophosphate formation. A1Rs are widely expressed and abundant in the spinal cord, brain, and heart. Interactions of LAs with the hA1R-coupled transduction cascade therefore might produce a broad range of clinically relevant effects. Methods The function of hA1Rs stably expressed in Chinese hamster ovary cells was determined with assays of cyclic adenosine monophosphate, receptor binding, and guanosine diphosphate/guanosine triphosphate gamma35S exchange by using reconstituted defined G protein subunits. Involvement of phosphodiesterase and Galphai was characterized by using the phosphodiesterase inhibitor rolipram and pertussis toxin, respectively. Results Lidocaine (10-9-10-1 M) had no significant effects on agonist or antagonist binding to the hA1R or on receptor-G protein interactions. However, cyclic adenosine monophosphate levels were reduced significantly to 50% by the LAs, even in the absence of an A1R agonist or presence of an A1R antagonist. This effect was unaffected by rolipram (10 mum), but abolished completely by pretreatment with pertussis toxin, which inactivates the Galphai protein. Therefore, the main target site for LAs in this pathway is located upstream from adenylate cyclase. Conclusions Lidocaine potentiates Galphai-coupled A1R signaling by reducing cyclic adenosine monophosphate production. The study suggests an interaction site for LAs in a Galphai-coupled signaling pathway, with the Galphai protein representing the prime candidate. Taken together with previous results showing inhibitory LA interactions on the Galphaq protein subunit, the data in the current study support the hypothesis that specific G protein subunits represent alternative sites of LA action.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference60 articles.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3