Modulation of the Cardiac Sodium Current by Inhalational Anesthetics in the Absence and Presence of β-Stimulation

Author:

Weigt Henry U.,Kwok Wai-Meng,Rehmert Georg C.,Bosnjak Zeljko J.

Abstract

Background Cardiac dysrhythmias during inhalational anesthesia in association with catecholamines are well known, and halothane is more "sensitizing" than isoflurane. However, the underlying mechanisms of action of volatile anesthetics with or without catecholamines on cardiac Na channels are poorly understood. In this study, the authors investigated the effects of halothane and isoflurane in the absence and presence of beta-stimulation (isoproterenol) on the cardiac Na+ current (INa) in ventricular myocytes enzymatically isolated from adult guinea pig hearts. Methods A standard whole-cell patch-clamp technique was used. The INa was elicited by depolarizing test pulses from a holding potential of -80 mV in reduced Na+ solution (10 mM). Results Isoproterenol alone depressed peak INa significantly by 14.6 +/- 1.7% (means +/- SEM). Halothane (1.2 mM) and isoflurane (1.0 mM) also depressed peak INa significantly by 42.1 +/- 3.4% and 21.3 +/- 1.9%, respectively. In the presence of halothane, the effect of isoproterenol (1 microM) was potentiated, further decreasing peak INa by 34.7 +/- 4.1%. The halothane effect was less, although significant, in the presence of a G-protein inhibitor (GDPbetaS) or a specific protein kinase A inhibitor [PKI-(6-22)-amide], reducing peak INa by 24.2 +/- 3.3% and 24 +/- 2.4%, respectively. In combination with isoflurane, the effect of isoproterenol on INa inhibition was less pronounced, but significant, decreasing current by 12.6 +/- 3.9%. GDPbetaS also reduced the inhibitory effect of isoflurane. In contrast, PKI-(6-22)-amide had no effect on isoflurane INa inhibition. Conclusions These results suggest two distinct pathways for volatile anesthetic modulation on the cardiac Na+ current: (1) involvement of G proteins and a cyclic adenosine monophosphate (cAMP)-mediated pathway for halothane and, (2) a G-protein-dependent but cAMP-independent pathway for isoflurane. Furthermore, these studies show that the inhibition of cardiac INa by isoproterenol is enhanced in the presence of halothane, suggesting some form of synergistic interaction between halothane and isoproterenol.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference37 articles.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3