Direct Inhibition of the N-methyl-D-aspartate Receptor Channel by High Concentrations of Opioids

Author:

Yamakura Tomohiro1,Sakimura Kenji2,Shimoji Koki3

Affiliation:

1. Instructor, Department of Anesthesiology.

2. Professor, Department of Cellular Neurobiology, Brain Research Institute.

3. Professor and Chairman, Department of Anesthesiology.

Abstract

Background Electrophysiologic and receptor binding studies showed that some opioids have noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist properties. Methods The effects and mechanisms of action of various opioid compounds were examined on four kinds of heteromeric NMDA receptor channels, namely the epsilon1/zeta1, epsilon2/zeta1, epsilon3/zeta1, and epsilon4/zeta1 channels, expressed in Xenopus oocytes. Furthermore, the action sites of opioids on NMDA receptor channels were investigated by site-directed mutagenesis. Results Meperidine inhibited four kinds of channels to a similar extent with inhibitor concentrations for half-control response (IC50s) of 210-270 microM. Morphine, fentanyl, codeine, and naloxone also inhibited NMDA receptor channels with affinities comparable to meperidine. Opioid inhibition exhibited voltage dependence and was quite effective at negative potentials. Opioids also shifted the inhibition curve of Mg2+ to the right. Furthermore, replacement of the conserved asparagine residue with glutamine in the channel-lining segment M2 of the zeta1 subunit, which constitutes the block sites of Mg2+ and ketamine, reduced the sensitivity to opioids, whereas that of the epsilon2 subunit barely affected the opioid sensitivity. Conclusions These results, together with previous findings, suggest that the low-affinity NMDA receptor antagonist activity is a common characteristic of various opioid compounds, and that the inhibition is a result of channel-block mechanisms at the site, which partially overlaps with those of Mg2+ and ketamine. This antagonist property of opioids may be clinically significant in the spinal cord following epidural or intrathecal administration, after which the cerebrospinal fluid concentrations of some opioids reach the high micromolar level.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3