Trametinib Inhibits Lymphatic Vessel Invasion of Bone in a Mouse Model of Gorham-Stout Disease

Author:

McCarter Anna L.1,Dellinger Michael T.12

Affiliation:

1. Division of Surgical Oncology, Department of Surgery and the Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas

2. Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, Texas

Abstract

Objective: Gorham-Stout disease (GSD) is a rare lymphatic anomaly that can be caused by somatic activating mutations in KRAS. This discovery has led investigators to suggest that MEK inhibitors could be a novel treatment for GSD. However, the effect of MEK inhibitors on bone disease in animal models of GSD has not been investigated. We recently reported that Osx-tTA;TetO-Vegfc mice exhibit a phenotype that resembles GSD. Osx-tTA;TetO-Vegfc mice overexpress vascular endothelial growth factor-C (VEGF-C) in bone, which stimulates the development of lymphatic vessels in bone and the gradual loss of cortical bone. The objective of this study was to characterize the effect of trametinib, an FDA-approved MEK1/2 inhibitor, on lymphangiogenesis and osteolysis in Osx-tTA;TetO-Vegfc mice. Methods: Immunoblotting was performed to assess the effect of trametinib on VEGF-C-induced phosphorylation of ERK1/2, AKT, and S6 in primary human lymphatic endothelial cells. Prevention and intervention experiments were performed to determine the effect of trametinib on lymphangiogenesis and osteolysis in Osx-tTA;TetO-Vegfc mice. Results: We found that trametinib blocked VEGF-C-induced phosphorylation of ERK1/2 in primary human lymphatic endothelial cells. We also found that trametinib prevented VEGF-C-induced lymphatic invasion of bone and cortical bone loss in Osx-tTA;TetO-Vegfc mice. Additionally, trametinib slowed the progression of disease in Osx-tTA;TetO-Vegfc mice with established disease. However, it did not reverse disease in Osx-tTA;TetO-Vegfc mice. Conclusion: Our results show trametinib impacts bone disease in Osx-tTA;TetO-Vegfc mice. These findings further support the testing of MEK inhibitors in patients with GSD and other RAS pathway-driven complex lymphatic anomalies with bone involvement.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3