Volumetric and textural analysis of PET/CT in patients with diffuse large B-cell lymphoma highlights the importance of novel MTVrate feature

Author:

Czibor Sándor1,Csatlós Zselyke2,Fábián Krisztián13,Piroska Márton1,Györke Tamás1

Affiliation:

1. Department of Nuclear Medicine, Medical Imaging Centre, Semmelweis University

2. Faculty of Medicine, Semmelweis University

3. Mediso Medical Imaging Systems, Budapest, Hungary

Abstract

Objectives To investigate the prognostic value of clinical, volumetric, and radiomics-based textural parameters in baseline [18F]FDG-PET/CT scans of diffuse large B-cell lymphoma (DLBCL) patients. Methods We retrospectively investigated baseline PET/CT scans and collected clinical data of fifty DLBCL patients. PET images were segmented semiautomatically to determine metabolic tumor volume (MTV), then the largest segmented lymphoma volume of interest (VOI) was used to extract first-, second-, and high-order textural features. A novel value, MTVrate was introduced as the quotient of the largest lesion’s volume and total body MTV. Receiver operating characteristics (ROC) analyses were performed and 24-months progression-free survival (PFS) of low- and high-risk cohorts were compared by log-rank analyses. A machine learning algorithm was used to build a prognostic model from the available clinical, volumetric, and textural data based on logistic regression. Results The area-under-the-curve (AUC) on ROC analysis was the highest of MTVrate at 0.74, followed by lactate-dehydrogenase, MTV, and skewness, with AUCs of 0.68, 0.63, and 0.55, respectively which parameters were also able to differentiate the PFS. A combined survival analysis including MTV and MTVrate identified a subgroup with particularly low PFS at 38%. In the machine learning-based model had an AUC of 0.83 and the highest relative importance was attributed to three textural features and both MTV and MTVrate as important predictors of PFS. Conclusion Individual evaluation of different biomarkers yielded only limited prognostic data, whereas a machine learning-based combined analysis had higher effectivity. MTVrate had the highest prognostic ability on individual analysis and, combined with MTV, it identified a patient group with particularly poor prognosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3