Machine learning approach using 18F-FDG PET-based radiomics in differentiation of lung adenocarcinoma with bronchoalveolar distribution and infection

Author:

Agüloğlu Nurşin1,Aksu Ayşegül2,Unat Damla S.3

Affiliation:

1. Department of Nuclear Medicine, Dr. Suat Seren Chest Diseases and Surgery Training and Research Hospital İzmir

2. Department of Nuclear Medicine, Başakşehir Çam and Sakura City Hospital, İstanbul

3. Department of Chest Diseases, Dr. Suat Seren Chest Diseases and Surgery Training and Research Hospital İzmir, Turkey

Abstract

Objective In this study, we aimed to evaluate the role of 18F-fluorodeoxyglucose PET/computerized tomography (18F-FDG PET/CT)-based radiomic features in the differentiation of infection and malignancy in consolidating pulmonary lesions and to develop a prediction model based on radiomic features. Material and methods The images of 106 patients who underwent 18F-FDG PET/CT of consolidated lesions observed in the lung between January 2015 and July 2020 were evaluated using LIFEx software. The region of interest of the lung lesions was determined and volumetric and textural features were obtained. Clinical and radiomic data were evaluated with machine learning algorithms to build a model. Results There was a significant difference in all standardized uptake value (SUV) parameters and 26 texture features between the infection and cancer groups. The features with a correlation coefficient of less than 0.7 among the significant features were determined as SUVmean, GLZLM_SZE, GLZLM_LZE, GLZLM_SZLGE and GLZLM_ZLNU. These five features were analyzed in the Waikato Environment for Knowledge Analysis program to create a model that could distinguish infection and cancer groups, and the model performance was found to be the highest with logistic regression (area under curve, 0.813; accuracy, 75.7%). The sensitivity and specificity values of the model in distinguishing cancer patients were calculated as 80.6 and 70.6%, respectively. Conclusions In our study, we created prediction models based on radiomic analysis of 18F-FDG PET/CT images. Texture analysis with machine learning algorithms is a noninvasive method that can be useful in the differentiation of infection and malignancy in consolidating lung lesions in the clinical setting.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3