Optimising cylinder model dimensions for VARSKIN to simulate a droplet of radionuclide skin contamination using Geant4 Monte Carlo code

Author:

James Gregory1,O’Brien Joseph2,Thomson Bill2

Affiliation:

1. Department of Nuclear Medicine, Royal Stoke University Hospital, Stoke-On-Trent

2. Department of Physics and Nuclear Medicine, City Hospital, Birmingham, UK

Abstract

Aim VARSKIN provides a convenient way of calculating skin dose from predefined geometries but the models are limited to concentric shapes such as discs, cylinders and point sources. The aim of this article is to use the Geant4 Monte Carlo code to independently compare the cylindrical geometries available in VARSKIN to more realistic droplet models obtained from photography. It may then be possible to recommend an appropriate cylinder model that can be used to represent a droplet within acceptable accuracy. Method Geant4 Monte Carlo code was used to model various droplets of radioactive liquid on the skin based on photographs. The dose rates were then calculated to the sensitive basal layer 70 µm beneath the surface for three droplet volumes (10, 30 and 50 µl) and 26 radionuclides. The dose rates from the cylinder models were then compared against the dose rates from the ‘true’ droplet models. Results The table gives the optimum cylinder dimensions that best approximate a true droplet shape for each volume. The mean bias and 95% confidence interval (CI) from the true droplet model are also quoted. Conclusion The evidence from the Monte Carlo data suggests that different droplet volumes require different cylinder aspect ratios to approximate the true droplet shape. Using the cylinder dimensions in the table in software packages such as VARSKIN, dose rates from radioactive skin contamination are expected to be within ± 7.4% of a ‘true’ droplet model at 95% CI.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3