Tamoxifen Upregulates Collagenase Gene Expression in Human Dermal Fibroblasts

Author:

Wang Joanne1,Lee Raphael C.1

Affiliation:

1. From the Departments of Surgery, Medicine, and Integrated Biosciences, The University of Chicago, Chicago, Ill.

Abstract

Background: Tamoxifen is a known inhibitor of fibroblast transforming growth factor beta biosynthesis and wound scar formation. Tamoxifen is also known to be an estrogen antagonist and protein kinase C (PKC) inhibitor. Cells treated with tamoxifen and other PKC/calmodulin inhibitors depolymerize their membrane focal adhesion complexes and cytoskeletal protein structures. These effects result in substrate detachment, cell shape rounding, and upregulation of collagenase synthesis and extracellular matrix degradation. The purpose of our study was to test the hypothesis that tamoxifen treatment of human foreskin fibroblasts results in alteration of cytoskeletal protein organization, cell detachment and rounding, and increased collagenase synthesis similar to known PKC/calmodulin inhibitors such as H-7. Methods: We characterized the effects of PKC/calmodulin inhibitors tamoxifen and H-7 on human dermal fibroblast morphology, cytoskeletal protein organization, and collagenase gene expression in monolayer culture and within collagen gels. Results: We found that fibroblasts responded to tamoxifen by initiation of actin filament depolymerization followed by alteration from spindle to spheroidal shapes. This change in cell shape led to increased collagenase synthesis in cells treated with either tamoxifen or H-7 compared with controls. There was also a 23% increase of hydroxyproline release from tamoxifen-treated fibroblast-populated collagen matrices. Conclusions: Tamoxifen may reduce scarring by inhibiting fibroblast PKC/calmodulin activity, which down-regulates pro-fibrotic transforming growth factor beta signaling and upregulates collagenase production. These effects mimic those of the known PKC/calmodulin inhibitor H-7. Overall, these findings suggest that tamoxifen and its analogues are promising agents for clinical investigation as small molecule regulators of fibrosis and scarring disorders.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Reference33 articles.

1. High-dose tamoxifen and sulindac as first-line treatment for desmoid tumors.;Hansmann;Cancer,2004

2. Treatment of recurrent desmoid tumour with tamoxifen.;Thomas;Aust N Z J Surg,1990

3. Morphological and morphometric analysis of the effects of intralesional tamoxifen on keloids.;Soares-Lopes;Exp Biol Med (Maywood),2017

4. The inhibitory effect of tamoxifen on keloid fibroblasts.;Mancoll;Surg Forum,1996

5. Topical tamoxifen therapy in hypertrophic scars or keloids in burns.;Gragnani;Arch Dermatol Res,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3