First Series of Free Flap Reconstruction Using a Dedicated Robotic System in a Multidisciplinary Microsurgical Center

Author:

Beier Justus P.1,Hackenberg Stephan2,Boos Anja M.1,Modabber Ali3,Duong Dinh Thien An2,Hölzle Frank3

Affiliation:

1. Department of Plastic Surgery, Hand Surgery—Burn Center, University Hospital RWTH Aachen, Aachen, Germany

2. Department of Otorhinolaryngology—Head and Neck Surgery, University Hospital RWTH Aachen, Aachen, Germany

3. Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Aachen, Germany.

Abstract

Summary: Robotic microsurgery is a novel technology for microsurgical free flap transplantation in reconstructive surgery. Recently, the first free flap transplantation using a dedicated robotic system for microsurgery (Symani Surgical System; Medical Microinstruments) was published for a single reconstructive case. For broader future application, evaluating its potential benefits in different anatomical regions, anastomotic configurations, and clinical scenarios is necessary. In this world-wide first free flap series using this robotic system, we describe our experience with this new technology in a multidisciplinary microsurgical center. The robotic system was used for different free flaps in a range of reconstructive applications in plastic surgery, oral and maxillofacial surgery, and head and neck surgery. A total of 23 flaps were performed, with all 23 arterial and a selection of two venous anastomoses being performed with the robotic system. Time for anastomoses was significantly longer than commonly. Five of the arterial robotic anastomoses had to be redone. All but one flap survived. We could show that this new dedicated microsurgical robotic system is feasible for carrying out robot-assisted anastomoses in end-to-end, as well as end-to-side fashion under varying clinical conditions and in different microsurgical subspecialties. However, some drawbacks still need to be overcome, which are partly related to individual and institutional learning curves, to finally estimate the potential benefit for robotic free flap surgery. Multidisciplinary application of the robotic system may accelerate this process by putting together different microsurgical backgrounds, while economic burden of establishing this new technology is spread among several departments.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Surgery,General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3