Smartphone Integration of Artificial Intelligence for Automated Plagiocephaly Diagnosis

Author:

Watt Ayden1,Lee James2,Toews Matthew3,Gilardino Mirko S.2

Affiliation:

1. Department of Experimental Surgery, McGill University, Montreal, Canada

2. Division of Plastic and Reconstructive Surgery, McGill University Health Center, Montreal, Canada

3. École de Technologie Supérieure, Department of Systems Engineering, Montréal, Canada.

Abstract

Background:Positional plagiocephaly is a pediatric condition with important cosmetic implications affecting ∼40% of infants under 12 months of age. Early diagnosis and treatment initiation is imperative in achieving satisfactory outcomes; improved diagnostic modalities are needed to support this goal. This study aimed to determine whether a smartphone-based artificial intelligence tool could diagnose positional plagiocephaly.Methods:A prospective validation study was conducted at a large tertiary care center with two recruitment sites: (1) newborn nursery, (2) pediatric craniofacial surgery clinic. Eligible children were aged 0–12 months with no history of hydrocephalus, intracranial tumors, intracranial hemorrhage, intracranial hardware, or prior craniofacial surgery. Successful artificial intelligence diagnosis required identification of the presence and severity of positional plagiocephaly.Results:A total of 89 infants were prospectively enrolled from the craniofacial surgery clinic (n = 25, 17 male infants [68%], eight female infants [32%], mean age 8.44 months) and newborn nursery (n = 64, 29 male infants [45%], 25 female infants [39%], mean age 0 months). The model obtained a diagnostic accuracy of 85.39% compared with a standard clinical examination with a disease prevalence of 48%. Sensitivity was 87.50% [95% CI, 75.94–98.42] with a specificity of 83.67% [95% CI, 72.35–94.99]. Precision was 81.40%, while likelihood ratios (positive and negative) were 5.36 and 0.15, respectively. The F1-score was 84.34%.Conclusions:The smartphone-based artificial intelligence algorithm accurately diagnosed positional plagiocephaly in a clinical environment. This technology may provide value by helping guide specialist consultation and enabling longitudinal quantitative monitoring of cranial shape.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Surgery,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3