A Web-Based Nomogram Predicting Para-aortic Nodal Metastasis in Incompletely Staged Patients With Endometrial Cancer: A Korean Multicenter Study

Author:

Kang Sokbom,Lee Jong-Min,Lee Jae-Kwan,Kim Jae-Weon,Cho Chi-Heum,Kim Seok-Mo,Park Sang-Yoon,Park Chan-Yong,Kim Ki-Tae

Abstract

ObjectiveThe purpose of this study is to develop a Web-based nomogram for predicting the individualized risk of para-aortic nodal metastasis in incompletely staged patients with endometrial cancer.MethodsFrom 8 institutions, the medical records of 397 patients who underwent pelvic and para-aortic lymphadenectomy as a surgical staging procedure were retrospectively reviewed. A multivariate logistic regression model was created and internally validated by rigorous bootstrap resampling methods. Finally, the model was transformed into a user-friendly Web-based nomogram (http://www.kgog.org/nomogram/empa001.html).ResultsThe rate of para-aortic nodal metastasis was 14.4% (57/397 patients). Using a stepwise variable selection, 4 variables including deep myometrial invasion, non–endometrioid subtype, lymphovascular space invasion, and log-transformed CA-125 levels were finally adopted. After 1000 repetitions of bootstrapping, all of these 4 variables retained a significant association with para-aortic nodal metastasis in the multivariate analysis—deep myometrial invasion (P= 0.001), non–endometrioid histologic subtype (P= 0.034), lymphovascular space invasion (P= 0.003), and log-transformed serum CA-125 levels (P= 0.004). The model showed good discrimination (C statistics = 0.87; 95% confidence interval, 0.82–0.92) and accurate calibration (Hosmer-LemeshowP= 0.74).ConclusionsThis nomogram showed good performance in predicting para-aortic metastasis in patients with endometrial cancer. The tool may be useful in determining the extent of lymphadenectomy after incomplete surgery.

Publisher

BMJ

Subject

Obstetrics and Gynaecology,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3