The Role of Morphology in Predicting Fumarate Hydratase–deficient Uterine Leiomyomas in Young Women

Author:

Bayram Aysel1,Bagbudar Sidar1,Sozen Hamdullah2,Onder Semen1,Yavuz Ekrem1

Affiliation:

1. Department of Pathology

2. Department of Gynecological Oncology, Istanbul University, Istanbul, Turkey

Abstract

Hereditary leiomyomatosis and renal cell carcinoma is caused by germline mutations in the fumarate hydratase (FH) gene and is associated with an increased incidence of leiomyomas and a potentially aggressive variant of renal cell carcinoma. Pathologic evaluation of uterine leiomyoma can provide an opportunity for early recognition of the syndrome. We reviewed all archived slides of the cases to identify the characteristic morphologic features described for FH-deficient leiomyomas. We performed immunohistochemistry on whole sections of patients with uterine leiomyoma to evaluate for both FH and 2-succinocysteine (2SC) expression. Of the 106 cases, 19 showed the characteristic eosinophilic nucleoli with perinuclear halos, and 24 revealed a characteristic eosinophilic cytoplasmic inclusion consisting of pink globules present within the cytoplasm. Both of these morphologic findings were present together in 15 cases, and hemangiopericytomatous vessels were detected in 23 cases. The loss of FH protein expression was detected in 14 out of 106 cases (13%), and 13 out of 106 cases (12%) were positive for 2SC. We detected 10 cases with both 2SC-positive and FH expression loss. The presence of eosinophilic nucleoli with perinuclear halos and eosinophilic cytoplasmic inclusion was associated with both loss of FH protein expression and 2SC positivity (P < 0.001). These findings underscore the importance of hematoxylin and eosin–based predictive morphology in FH-deficient uterine leiomyomas. Therefore, morphologic assessment of uterine leiomyomas for features of FH deficiency can serve as a screening tool for hereditary leiomyomatosis and renal cell carcinoma syndrome, allowing patients to be divided according to their hereditary risk assessment.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Medical Laboratory Technology,Histology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3