Human Spinal Bone Dust as a Potential Local Autograft

Author:

Gao Ryan1,Street Matthew1,Tay Mei L.1,Callon Karen E.1,Naot Dorit1,Lock Alistair1,Munro Jacob T.1,Cornish Jillian1,Ferguson John12,Musson David1

Affiliation:

1. Bone and Joint Research Group, University of Auckland, Auckland, New Zealand

2. Mercy Ascot Hospitals, Auckland, New Zealand.

Abstract

Study Design.In vitroStudy.Objective.To evaluate the effect that factors released from human posterior spinal bone dust have on primary human osteoblast growth and maturation.Summary of Background Data.Bone dust, created during spinal fusion surgeries, has the potential to be used as an autologous bone graft by providing a source of viable autologous osteoblasts and mesenchymal stem cells with osteogenic potential. Till date, no information is available on whether bone dust also provides a source of anabolic factors with the potential to enhance osteoblast proliferation and maturation, which would enhance its therapeutic potential.Methods.Bone dust was collected from consenting patients undergoing elective posterior spinal fusion surgeries, and primary human osteoblasts were cultured from patients undergoing elective hip or knee arthroplasty. Growth factors and cytokines released by bone dust were quantified using enzyme-linked immunosorbent assay. Primary human osteoblast proliferation and gene expression in response to bone dust were assessed using3H-thymidine incorporation and real-time polymerase chain reaction, respectively.Results.Human bone dust released anabolic cytokines (IL-1β and IL-6) and growth factors (TGF-β, VEGF, FGF-Basic, and PDGF-BB) in increasing concentrations over a 7-day period.In vitro, the anabolic factors released by bone dust increased osteoblast proliferation by 7-fold, compared with osteoblasts cultured alone. In addition, the factors released from bone dust up-regulated a number of osteoblastic genes integral to osteoblast differentiation, maturation, and angiogenesis.Conclusion.This study is the first to demonstrate that human posterior spinal bone dust released anabolic factors that potently enhance osteoblast proliferation and the expression of genes that favor bone healing and bone union. As bone dust is anabolic and its harvest is fast, simple, and safe to perform, spinal surgeons should be encouraged to ‘recycle’ bone dust and harness the regenerative potential of this free autologous bone graft.Level of Evidence:N/A

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3