Within-hospital Temporal Clustering of Postoperative Complications and Implications for Safety Monitoring and Benchmarking Using ACS-NSQIP Data

Author:

Cohen Mark E.1,Liu Yaoming1,Ko Clifford Y.12,Hall Bruce L.13

Affiliation:

1. Division of Research and Optimal Patient Care, American College of Surgeons, Chicago, IL

2. Department of Surgery, University of California Los Angeles David Geffen School of Medicine and the VA Greater Los Angeles Healthcare System, LA

3. Department of Surgery, UC Davis Health System and UC Davis School of Medicine, University of California, Davis, Sacramento, CA.

Abstract

Objective: To determine the extent to which within-hospital temporal clustering of postoperative complications is observed in the American College of Surgeons, National Surgical Quality Improvement Program (ACS-NSQIP). Background: ACS-NSQIP relies on periodic and on-demand reports for quality benchmarking. However, if rapid increases in postoperative complication rates (clusters) are common, other reporting methods might be valuable additions to the program. This article focuses on estimating the incidence of within-hospital temporal clusters. Methods: ACS-NSQIP data from 1,547,440 patients, in 425 hospitals, over a 2-year period was examined. Hospital-specific Cox proportional hazards regression was used to estimate the incidence of mortality, morbidity, and surgical site infection (SSI) over a 30-day postoperative period, with risk adjustment for patient and procedure and with additional adjustments for linear trend, day-of-week, and season. Clusters were identified using scan statistics, and cluster counts were compared, using unpaired and paired t tests, for different levels of adjustment and when randomization of cases across time eliminated all temporal influences. Results: Temporal clusters were rarely observed. When clustering was adjusted only for patient and procedure risk, an annual average of 0.31, 0.85, and 0.51 clusters were observed per hospital for mortality, morbidity, and SSI, respectively. The number of clusters dropped after adjustment for linear trend, day-of-week, and season (0.31–0.24; P = 0.012; 0.85–0.80; P = 0.034; and 0.51–0.36; P < 0.001; using paired t tests) for mortality, morbidity, and SSI, respectively. There was 1 significant difference in the number of clusters when comparing data with all adjustments and after data were randomized (0.24 and 0.25 for mortality; P = 0.853; 0.80 and 0.82 for morbidity; P = 0.529; and 0.36 and 0.46 [randomized data had more clusters] for SSI; P = 0.001; using paired t tests) for mortality, morbidity, and SSI, respectively. Conclusions: Temporal clusters of postoperative complications were rarely observed in ACS-NSQIP data. The described methodology may be useful in assessing clustering in other surgical arenas.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3