Augmenting Breast Implant Research

Author:

Shih Sabrina1,Salazar Hector F.1,Poveromo Luke P.1,Askinas Carly1,Vernice Nicholas1,Corpuz George S.1,O'Connell Gillian M.1,Dong Xue1,Spector Jason

Affiliation:

1. Laboratory of Bioregenerative Medicine and Surgery, Division of Plastic Surgery, Department of Surgery, Weill Cornell Medical College, New York

Abstract

Background Because of the association of textured breast implants with breast implant–associated anaplastic large cell lymphoma, anatomically shaped breast implants, which rely on a textured surface to maintain rotational stability, have been recalled from the market. The dearth of anatomically shaped implants on the market reflects a need for novel breast implant technology, which has been traditionally developed by commercial breast implant manufacturers due to the complexities of implant manufacturing. To increase the accessibility of preclinical breast implant research, miniature breast implants made from polydimethylsiloxane were designed and fabricated for high throughput and low-cost prototyping and in vivo testing of both smooth and textured implants in a laboratory setting. Methods Two-piece negative molds measuring 2 × 1 cm were constructed in Fusion360 and 3D printed in Polysmooth filament. Textured molds were painted with a mixture of an epoxy and fine sugar or granular salt to create textured surfaces, while molds for smooth implants were smoothed using ethanol spray. Molds were injected with polydimethylsiloxane and cured for 12 hours at 37°C. The surface topography of laboratory-made implants and commercial textured and smooth implant shells was analyzed using scanning electron microscopy and implants were evaluated in vivo in an immunocompetent rodent model. Results Implants retained the original dome shape of the 3D-printed molds. Qualitative assessment of scanning electron microscopy images demonstrated similar surface topography between laboratory-made and commercial smooth and textured implants. There was no statistical difference in the diameter or density of the surface indentations of the Allergan's textured implant compared with laboratory-made textured implants (P > 0.05). Finally, the surface topography and thickness of laboratory-made implant capsules were similar to previously published data using industry made miniature silicone devices implanted in rats. Conclusions This study demonstrates a low-cost, highly customizable approach to fabricate miniature smooth and textured breast implant prototypes for in vivo studies. The accessibility of this implant fabrication strategy allows nonindustry investigators to develop novel implant designs more rapidly for preclinical investigation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3