Biophotonic Effects of Low-Level Laser Therapy on Adipose-Derived Stem Cells for Soft Tissue Deficiency

Author:

Chang Cheng-Jen,Hsiao Yen-Chang1,Hang Nguyen Le Thanh,Yang Tzu-Sen2

Affiliation:

1. Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University

2. Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei, Taiwan

Abstract

Purposes The objectives of this study are to use diode lasers for low-level laser therapy (LLLT) and to assess its applicability and effects in adipose-derived stem cell (ADSC) growth processes. Methods Studies were conducted on the diode laser with wavelengths of 622.7, 527.1, and 467.3 nm. The mechanism of action of LLL illumination was studied on ADSCs, isolated from human tissue, and then cultured by examining different wavelengths to determine the relevant light parameters for optimal responses. We used enzyme-linked immunosorbent assay and real-time polymerase chain to determine the percentages of fibroblast-mediated procollagen type 1 and matrix metallopeptidase 1 (MMP-1), MMP-2, and MMP-9 production at different wavelengths. The levels of lactate dehydrogenase produced by ADSCs after LLL illumination were assessed as well. Clinical results from 20 patients treated for soft tissue deficiency were collected for assessment of ADSC-assisted lipotransfer. Results Low-level laser (622.7 nm) illumination on cell cultures in vitro increased ADSCs proliferation, type 1 procollagen expression, collagen production, as well as MMP-1, MMP-2, and MMP-9 relative expression. Statistical analysis demonstrated a significant difference in red light (622.7 nm) versus green light (527.1 nm) and blue light (467.3 nm, P < 0.05). No significant differences were noted between the effects of green and blue lights. In clinical application, all patients attained significant improvement with treatment in the final outcome assessment after 6 months. Conclusions Low-level laser illumination may affect ADSCs growth processes and ADSC-assisted lipotransfer for soft tissue deformity, scar treatment, wound healing, and other reconstructive surgery.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Surgery

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Infrared and Green Photomodulation Exposure on the Number of Active Myosatellite Cells in Regenerating Muscles;Bulletin of Experimental Biology and Medicine;2024-02

2. Photobiomodulation Literature Watch February 2023;Photobiomodulation, Photomedicine, and Laser Surgery;2023-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3