Structural genomic variants in thoracic aortic disease

Author:

Meester Josephina A.N.1,Hebert Anne1,Loeys Bart L.12

Affiliation:

1. Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium

2. Department of Clinical Genetics, Radboud University Medical Center, Nijmegen, The Netherlands

Abstract

Purpose of review Structural genomic variants have emerged as a relevant cause for several disorders, including intellectual disability, neuropsychiatric disorders, cancer and congenital heart disease. In this review, we will discuss the current knowledge about the involvement of structural genomic variants and, in particular, copy number variants in the development of thoracic aortic and aortic valve disease. Recent findings There is a growing interest in the identification of structural variants in aortopathy. Copy number variants identified in thoracic aortic aneurysms and dissections, bicuspid aortic valve related aortopathy, Williams-Beuren syndrome and Turner syndrome are discussed in detail. Most recently, the first inversion disrupting FBN1 has been reported as a cause for Marfan syndrome. Summary During the past 15 years, the knowledge on the role of copy number variants as a cause for aortopathy has grown significantly, which is partially due to the development of novel technologies including next-generation sequencing. Although copy number variants are now often investigated on a routine basis in diagnostic laboratories, more complex structural variants such as inversions, which require the use of whole genome sequencing, are still relatively new to the field of thoracic aortic and aortic valve disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Reference43 articles.

1. Integrative analysis of genomic variants reveals new associations of candidate haploinsufficient genes with congenital heart disease;Audain;PLoS Genet,2021

2. Copy number variation;Mace;Methods Mol Biol,2018

3. Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing;Kosugi;Genome Biol,2019

4. Structural variant calling: the long and the short of it;Mahmoud;Genome Biol,2019

5. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with Thoracic Aortic Disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine;Hiratzka;Circulation,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3