Identifying Main Themes in Diabetes Management Interviews Using Natural Language Processing–Based Text Mining

Author:

Cha EunSeok,Lee Seonah

Abstract

This study aimed to identify the main themes from exit interviews of adult patients with type 2 diabetes after completion of a diabetes education program. Eighteen participants with type 2 diabetes completed an exit interview regarding their program experience and satisfaction. Semistructured interview questions were used, and the interviews were auto-recorded. The interview transcripts were preprocessed and analyzed using four natural language processing–based text-mining techniques. The top 30 words from the term frequency and term frequency–inverse document frequency each were derived. In the N-gram analysis, the connection strength of “diabetes” and “education” was the highest, and the simultaneous connectivity of word chains ranged from a maximum of seven words to a minimum of two words. Based on the CONvergence of iteration CORrelation (CONCOR) analysis, three clusters were generated, and each cluster was named as follows: participation in a diabetes education program to control blood glucose, exercise, and use of digital devices. This study using text mining proposes a new and useful approach to visualize data to develop patient-centered diabetes education.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Reference21 articles.

1. Exercise and insulin resistance in type 2 diabetes mellitus: a systematic review and meta-analysis;Annals of Physical and Rehabilitation Medicine,2019

2. Diabetes structured self-management education programmes: a narrative review and current innovations;The Lancet. Diabetes & Endocrinology,2018

3. How to do a systematic review: a best practice guide for conducting and reporting narrative reviews, meta-analyses, and meta-syntheses;Annual Review of Psychology,2019

4. Natural language processing of nursing notes: an integrative review;CIN: Computers Informatics Nursing,2023

5. Applying text mining methods to suicide research;Suicide & Life-Threatening Behavior,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3