Network typologies predict future molecular linkages in the network of HIV transmission

Author:

Rich Shannan N.12,Cook Robert L.12,Mavian Carla N.23,Garrett Karen24,Spencer Emma C.5,Salemi Marco23,Prosperi Mattia1

Affiliation:

1. Department of Epidemiology, Colleges of Public Health and Health Professions and Medicine

2. Emerging Pathogens Institute

3. Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine

4. Department of Plant Pathology, University of Florida, Gainesville

5. Florida Department of Health, Division of Disease Control and Health Protection, Bureau of Communicable Diseases, Tallahassee, Florida, USA.

Abstract

Objective: HIV molecular transmission network typologies have previously demonstrated associations to transmission risk; however, few studies have evaluated their predictive potential in anticipating future transmission events. To assess this, we tested multiple models on statewide surveillance data from the Florida Department of Health. Design: This was a retrospective, observational cohort study examining the incidence of new HIV molecular linkages within the existing molecular network of persons with HIV (PWH) in Florida. Methods: HIV-1 molecular transmission clusters were reconstructed for PWH diagnosed in Florida from 2006 to 2017 using the HIV-TRAnsmission Cluster Engine (HIV-TRACE). A suite of machine-learning models designed to predict linkage to a new diagnosis were internally and temporally externally validated using a variety of demographic, clinical, and network-derived parameters. Results: Of the 9897 individuals who received a genotype within 12 months of diagnosis during 2012–2017, 2611 (26.4%) were molecularly linked to another case within 1 year at 1.5% genetic distance. The best performing model, trained on two years of data, was high performing (area under the receiving operating curve = 0.96, sensitivity = 0.91, and specificity = 0.90) and included the following variables: age group, exposure group, node degree, betweenness, transitivity, and neighborhood. Conclusions: In the molecular network of HIV transmission in Florida, individuals’ network position and connectivity predicted future molecular linkages. Machine-learned models using network typologies performed superior to models using individual data alone. These models can be used to more precisely identify subpopulations for intervention.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Infectious Diseases,Immunology,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3