Assessing transmission attribution risk from simulated sequencing data in HIV molecular epidemiology

Author:

Nascimento Fabrícia F.1,Mehta Sanjay R.2,Little Susan J.2,Volz Erik M.1

Affiliation:

1. MRC Centre for Global Infectious Disease Analysis and the Department of Infectious Disease Epidemiology, Imperial College London, London, UK

2. Division of Infectious Diseases, University of California San Diego, San Diego, CA, USA.

Abstract

Background: HIV molecular epidemiology (ME) is the analysis of sequence data together with individual-level clinical, demographic, and behavioral data to understand HIV epidemiology. The use of ME has raised concerns regarding identification of the putative source in direct transmission events. This could result in harm ranging from stigma to criminal prosecution in some jurisdictions. Here we assessed the risks of ME using simulated HIV genetic sequencing data. Methods: We simulated social networks of men-who-have-sex-with-men, calibrating the simulations to data from San Diego. We used these networks to simulate consensus and next-generation sequence (NGS) data to evaluate the risks of identifying direct transmissions using different HIV sequence lengths, and population sampling depths. To identify the source of transmissions, we calculated infector probability and used phyloscanner software for the analysis of consensus and NGS data, respectively. Results: Consensus sequence analyses showed that the risk of correctly inferring the source (direct transmission) within identified transmission pairs was very small and independent of sampling depth. Alternatively, NGS analyses showed that identification of the source of a transmission was very accurate, but only for 6.5% of inferred pairs. False positive transmissions were also observed, where one or more unobserved intermediaries were present when compared to the true network. Conclusion: Source attribution using consensus sequences rarely infers direct transmission pairs with high confidence but is still useful for population studies. In contrast, source attribution using NGS data was much more accurate in identifying direct transmission pairs, but for only a small percentage of transmission pairs analyzed.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Infectious Diseases,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3