Leveraging Electronic Health Record Data for Timely Chronic Disease Surveillance: The Multi-State EHR-Based Network for Disease Surveillance

Author:

Hohman Katherine H.ORCID,Martinez Amanda K.ORCID,Klompas MichaelORCID,Kraus Emily M.,Li Wenjun,Carton Thomas W.,Cocoros Noelle M.ORCID,Jackson Sandra L.,Karras Bryant ThomasORCID,Wiltz Jennifer L.ORCID,Wall Hilary K.ORCID

Abstract

Context: Electronic health record (EHR) data can potentially make chronic disease surveillance more timely, actionable, and sustainable. Although use of EHR data can address numerous limitations of traditional surveillance methods, timely surveillance data with broad population coverage require scalable systems. This report describes implementation, challenges, and lessons learned from the Multi-State EHR-Based Network for Disease Surveillance (MENDS) to help inform how others work with EHR data to develop distributed networks for surveillance. Program: Funded by the Centers for Disease Control and Prevention (CDC), MENDS is a data modernization demonstration project that aims to develop a timely national chronic disease sentinel surveillance system using EHR data. It facilitates partnerships between data contributors (health information exchanges, other data aggregators) and data users (state and local health departments). MENDS uses query and visualization software to track local emerging trends. The program also uses statistical and geospatial methods to generate prevalence estimates of chronic disease risk measures at the national and local levels. Resulting data products are designed to inform public health practice and improve the health of the population. Implementation: MENDS includes 5 partner sites that leverage EHR data from 91 health system and clinic partners and represents approximately 10 million patients across the United States. Key areas of implementation include governance, partnerships, technical infrastructure and support, chronic disease algorithms and validation, weighting and modeling, and workforce education for public health data users. Discussion: MENDS presents a scalable distributed network model for implementing national chronic disease surveillance that leverages EHR data. Priorities as MENDS matures include producing prevalence estimates at various geographic and subpopulation levels, developing enhanced data sharing and interoperability capacity using international data standards, scaling the network to improve coverage nationally and among underrepresented geographic areas and subpopulations, and expanding surveillance of additional chronic disease measures and social determinants of health.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Public Health, Environmental and Occupational Health,Health Policy

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3