Site-Specific Alteration of Actin Assembly Visualized in Living Renal Epithelial Cells during ATP Depletion

Author:

Shelden Eric A.,Weinberg Joel M.,Sorenson Dorothy R.,Edwards Chris A.,Pollock Fiona M.

Abstract

ABSTRACT. Disruption of normal actin organization in renal tubular epithelial cells is an important element of renal injury induced by ischemia. Studies of fixed cells indicate that the cytoskeleton is disrupted by both ischemia and ATP depletion in a site-specific manner. However, few studies have examined these effects in living cells, and the relationship between the time course of ATP reduction and alteration of the cytoskeleton remains unclear. Here, time-lapse video images of cultured renal epithelial cells expressing an enhanced green fluorescent protein (EGFP)-actin fusion protein were obtained, and the kinetics of fluorescence actin distribution before and during ATP depletion is quantified and compared with measured ATP levels. This study found that assembly of lamellar actin is inhibited rapidly as cellular ATP levels are reduced, whereas disruption of actin in stress fibers is more gradual and persistent. Actin associated with focal adhesions is largely resistant to ATP depletion in these experiments, and, consistent with previous studies, particulate aggregates of actin were formed within the cytoplasm of ATP-depleted cells. Most surprisingly, time-lapse imaging of EGFP-actin distribution, quantitative fluorescence imaging of phalloidin-stained cells, and ultrastructural studies indicate that assembly of actin filaments occurs at sites of epithelial cell-cell attachment in ATP-depleted cells. This assembly is initiated early during ATP depletion and continues after ATP levels are maximally reduced. Assembly of actin at sites of cell-cell attachment may be an element of the pathology of injury induced by ischemia, or alternatively, could reflect the function of a protective mechanism. These studies directly demonstrate site-specific alteration of actin assembly in living epithelial cells during ATP depletion. The results also reveal that actin reorganization continues after ATP levels are maximally decreased and that epithelial cell-cell attachments are sites of actin assembly in ATP-depleted cells. Email: shelden@umich.edu

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3