Homodimerization and Heterodimerization of the Glomerular Podocyte Proteins Nephrin and NEPH1

Author:

Gerke Peter,Huber Tobias B.,Sellin Lorenz,Benzing Thomas,Walz Gerd

Abstract

ABSTRACT. Nephrin and NEPH1, the gene products of NPHS1 and NEPH1, are podocyte membrane proteins of the Ig superfamily. Similar to the nephrin knockout, mice lacking NEPH1 show severe proteinuria leading to perinatal death. To identify the ligand of NEPH1, the extracellular domain of NEPH1 was fused to human IgG. This NEPH1-Ig fusion protein labeled the glomerular capillary wall of mouse kidneys in a staining pattern identical to NEPH1 and nephrin, prompting speculation that that NEPH1 might form homodimers and/or heterodimers with nephrin. In coimmunoprecipitation and pull-down assays, the NEPH1-Ig fusion protein precipitated wild-type NEPH1 from overexpressing HEK 293T cells. Truncational analysis revealed that the adhesive properties were not confined to a single Ig domain of NEPH1. Fusion proteins containing two Ig domains of NEPH1 were sufficient to immobilize NEPH1, but they failed to interact with control protein containing the phylogenetically related PKD repeats of polycystin-1. NEPH1 also precipitated nephrin, a protein with eight Ig domains and a fibronectin-like domain. Truncational analysis of nephrin revealed a very similar mode of interaction, i.e., two nephrin Ig domains fused to human IgG precipitated either nephrin or NEPH1, but not the control protein. Both NEPH1 and nephrin interactions were strictly dependent upon posttranslational glycosylation, and bacterially expressed protein failed to bind NEPH1. These findings demonstrate that the Ig domains of NEPH1 and nephrin form promiscuous homodimeric and heterodimeric interactions that may facilitate cis- and trans- homodimerizations and heterodimerizations of these molecules at the glomerular slit diaphragm.E-mail: walz@med1.ukl.uni-freiburg.de

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Cited by 152 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3