Na Transport in Autosomal Recessive Polycystic Kidney Disease (ARPKD) Cyst Lining Epithelial Cells

Author:

Rohatgi Rajeev,Greenberg Andrew,Burrow Christopher R.,Wilson Patricia D.,Satlin Lisa M.

Abstract

ABSTRACT. Autosomal dominant (ADPKD) and recessive (ARPKD) polycystic kidney disease are characterized by the progressive growth and expansion of cysts or ectatic collecting ducts, respectively, that ultimately destroy the normal renal parenchyma. Evidence from experimental models of ADPKD suggests that transepithelial Na and fluid secretion contribute to cyst growth, yet little is known about solute transport in ARPKD. This purpose of this study was to begin to characterize the expression and polarity of transport proteins involved in vectorial Na movement in ARPKD epithelium. Immunodetectable α1 and β2 subunits of the Na/K-ATPase localized to the apical membrane of collecting duct cysts in tissue sections of human fetal ARPKD nephrectomy specimens and conditionally immortalized cells derived from these cysts. Measurements of transepithelial 22Na transport performed on monolayers of ARPKD and age-matched collecting tubule (HFCT) cells grown on permeable supports revealed net Na absorption in both models. However, ARPKD cells absorbed Na at a rate approximately 50% greater than that of HFCT. Furthermore, Na absorption in ARPKD cells was partially inhibited by 100 μM apical amiloride or 1 mM basolateral but not apical ouabain. Northern blot analyses of ARPKD whole kidney and Western immunoblot of ARPKD cells showed approximately twofold greater expression of the α-subunit of the epithelial Na channel (ENaC) compared with age-matched controls. These results suggest that, despite the presence of apical Na/K-ATPase, ARPKD cyst-lining cells absorb Na by a pathway that is modestly amiloride-sensitive. Whether Na absorption is mediated by ENaC, perhaps of nonclassical subunit composition, or another amiloride-sensitive transporter remains to be determined. E-mail: lisa.satlin@mssm.edu

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3