Recent contributions of single-cell and spatial profiling to the understanding of bladder cancer

Author:

Grausenburger Reinhard12,Herek Paula12,Shariat Shahrokh F.13456,Englinger Bernhard12

Affiliation:

1. Department of Urology and Comprehensive Cancer Center

2. Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria

3. Department of Urology, Weill Cornell Medical College, New York, New York

4. Department of Urology, University of Texas Southwestern, Dallas, Texas, USA

5. Department of Urology, Second Faculty of Medicine, Charles University, Prague, Czech Republic

6. Division of Urology, Department of Special Surgery, Jordan University Hospital, The University of Jordan, Amman, Jordan

Abstract

Purpose of review Current risk stratification and treatment decision-making for bladder cancer informed by histopathology as well as molecular diagnostics face limitations. This review summarizes recent advancements in single-cell and spatial omics methodologies for understanding bladder cancer biology and their potential impact on development of novel therapeutic strategies. Recent findings Single-cell RNA sequencing and spatial omics techniques offer unprecedented insights into various aspects of tumor microenvironment (TME), bladder cancer heterogeneity, cancer stemness, and cellular plasticity. Studies have identified multiple malignant cell subpopulations within tumors, revealing diverse transcriptional states and clonal evolution. Additionally, intratumor heterogeneity has been linked to tumor progression and therapeutic response. Immune cell composition analysis has revealed immunosuppressive features in the TME, impacting treatment response. Furthermore, studies have elucidated the role of cancer-associated fibroblasts and endothelial cells in shaping the tumor immune landscape and response to therapy. Summary Single-cell and spatial omics technologies have revolutionized our understanding of bladder cancer biology, uncovering previously unseen complexities. These methodologies provide valuable insights into tumor heterogeneity and microenvironmental interactions, with implications for therapeutic development. However, challenges remain in translating research findings into clinical practice and implementing personalized treatment strategies. Continued interdisciplinary collaboration and innovation are essential for overcoming these challenges and leveraging the full potential of single-cell and spatial omics in improving bladder cancer diagnosis and treatment.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3