Body Composition and Radiomics From 18F-FDG PET/CT Together Help Predict Prognosis for Patients With Stage IV Non–Small Cell Lung Cancer

Author:

Zhang Yi,Tan Weiyue,Zheng Zhonghang,Wang Jie,Xing Ligang1,Sun Xiaorong2ORCID

Affiliation:

1. Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China

2. Nuclear Medicine

Abstract

Purpose To determine whether integration of data on body composition and radiomic features obtained using baseline 18F-FDG positron emission tomography/computed tomography (PET/CT) images can be used to predict the prognosis of patients with stage IV non–small cell lung cancer (NSCLC). Methods A total of 107 patients with stage IV NSCLC were retrospectively enrolled in this study. We used the 3D Slicer (The National Institutes of Health, Bethesda, Maryland) software to extract the features of PET and CT images. Body composition measurements were taken at the L3 level using the Fiji (Curtis Rueden, Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison) software. Independent prognostic factors were defined by performing univariate and multivariate analyses for clinical factors, body composition features, and metabolic parameters. Data on body composition and radiomic features were used to build body composition, radiomics, and integrated (combination of body composition and radiomic features) nomograms. The models were evaluated to determine their prognostic prediction capabilities, calibration, discriminatory abilities, and clinical applicability. Results Eight radiomic features relevant to progression-free survival (PFS) were selected. Multivariate analysis showed that the visceral fat area/subcutaneous fat area ratio independently predicted PFS (P = 0.040). Using the data for body composition, radiomic features, and integrated features, nomograms were established for the training (areas under the curve = 0.647, 0.736, and 0.803, respectively) and the validation sets (areas under the receiver operating characteristic = 0.625, 0.723, and 0.866, respectively); the integrated model showed better prediction ability than that of the other 2 models. The calibration curves revealed that the integrated nomogram exhibited a better agreement between the estimation and the actual observation in terms of prediction of the probability of PFS than that of the other 2 models. Decision curve analysis revealed that the integrated nomogram was superior to the body composition and radiomics nomograms for predicting clinical benefit. Conclusion Integration of data on body composition and PET/CT radiomic features can help in prediction of outcomes in patients with stage IV NSCLC.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Radiology, Nuclear Medicine and imaging

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3